The Music of the Primes: Why an unsolved problem in mathematics matters. Marcus Sautoy du

Читать онлайн.
Название The Music of the Primes: Why an unsolved problem in mathematics matters
Автор произведения Marcus Sautoy du
Жанр Прочая образовательная литература
Серия
Издательство Прочая образовательная литература
Год выпуска 0
isbn 9780007375875



Скачать книгу

it, he points to it, either directly or through the chain of summits which led him to recognise it himself. When his pupil also sees it, the research, the argument, the proof is finished.

      The proof is the story of the trek and the map charting the coordinates of that journey – the mathematician’s log. Readers of the proof will experience the same dawning realisation as its author. Not only do they finally see the way to the peak, but also they understand that no new development will undermine the new route. Very often a proof will not seek to dot every i and cross every t. It is a description of the journey and not necessarily the re-enactment of every step. The arguments that mathematicians provide as proofs are designed to create a rush in the mind of the reader. Hardy used to describe the arguments we give as ‘gas, rhetorical flourishes designed to affect psychology, pictures on the board in the lecture, devices to stimulate the imagination of pupils’.

      The mathematician is obsessed with proof, and will not be satisfied simply with experimental evidence for a mathematical guess. This attitude is often marvelled at and even ridiculed in other scientific disciplines. Goldbach’s Conjecture has been checked for all numbers up to 400,000,000,000,000 but has not been accepted as a theorem. Most other scientific disciplines would be happy to accept this overwhelming numerical data as a convincing enough argument, and move on to other things. If, at a later date, new evidence were to crop up which required a reassessment of the mathematical canon, then fine. If it is good enough for the other sciences, why is mathematics any different?

      Most mathematicians would quiver at the thought of such heresy. As the French mathematician André Weil expressed it, ‘Rigour is to the mathematician what morality is to men.’ Part of the reason is that evidence is often quite hard to assess in mathematics. More than any other part of mathematics, the primes take a long time to reveal their true colours. Even Gauss was taken in by overwhelming data in support of a hunch he had about prime numbers, but theoretical analysis later revealed that he had been duped. This is why a proof is essential: first appearances can be deceptive. While the ethos of every other science is that experimental evidence is all that you can truly rely on, mathematicians have learnt never to trust numerical data without proof.

      In some respects, the ethereal nature of mathematics as a subject of the mind makes the mathematician more reliant on providing proof to lend some feeling of reality to this world. Chemists can happily investigate the structure of a solid buckminsterfullerene molecule; sequencing the genome presents the geneticist with a concrete challenge; even the physicists can sense the reality of the tiniest subatomic particle or a distant black hole. But the mathematician is faced with trying to understand objects with no obvious physical reality such as shapes in eight dimensions, or prime numbers so large they exceed the number of atoms in the physical universe. Given a palette of such abstract concepts the mind can play strange tricks, and without proof there is a danger of creating a house of cards. In the other scientific disciplines, physical observation and experiment provide some reassurance of the reality of a subject. While other scientists can use their eyes to see this physical reality, mathematicians rely on mathematical proof, like a sixth sense, to negotiate their invisible subject.

      Searching for proofs of patterns that have already been spotted is also a great catalyst for further mathematical discovery. Many mathematicians feel that it may be better if these defining problems never get solved because of the wonderful new mathematics encountered along the way. The problems allow for exploration of a kind which forces mathematical pioneers to pass through lands they could never have envisaged at the outset of their journey.

      But perhaps the most convincing argument for why the culture of mathematics places such stock in proving that a statement is true is that, unlike the other sciences, there is the luxury of being able to do so. In how many other disciplines is there anything that parallels the statement that Gauss’s formula for triangular numbers will never fail to give the right answer? Mathematics may be an ethereal subject confined to the mind, but its lack of tangible reality is more than compensated for by the certitude that proof provides.

      Unlike the other sciences, in which models of the world can crumble between one generation and the next, proof in mathematics allows us to establish with 100 per cent certainty that facts about prime numbers will not change in the light of future discoveries. Mathematics is a pyramid where each generation builds on the achievements of the last without fear of any collapse. This durability is what is so addictive about being a mathematician. For no science other than mathematics can we say that what the ancient Greeks established in their subject holds true today. We may scoff now at the Greeks’ belief that matter was made from fire, air, water and earth. Will future generations look back on the list of 109 atoms that make up Mendeleev’s Periodic Table of elements with as much disdain as we view the Greek model of the chemical world? In contrast, all mathematicians begin their mathematical education by learning what the ancient Greeks proved about prime numbers.

      The certainty that proof gives to the mathematician is something that is envied by members of other university departments as much as it is jeered at. The permanence created by mathematical proof leads to the genuine immortality to which Hardy referred. This is often why people surrounded by a world of uncertainty are drawn to the subject. Time after time has the mathematical world offered a refuge for young minds yearning to escape from a real world they cannot cope with.

      Our faith in the durability of a proof is reflected in the rules governing the award of Clay’s Millennium Prizes. The prize money is released two years after publication of the proof and with the general acceptance of the mathematical community. Of course, this is no guarantee that there isn’t a subtle error, but it does recognise that we generally believe that errors can be spotted in proofs without waiting many years for new evidence. If there is an error, it must be there on the page in front of us.

      Are mathematicians arrogant in believing that they have access to absolute proof? Can one argue that a proof that all numbers are built from primes is as likely to be overthrown as the theory of Newtonian physics or the theory of an indivisible atom? Most mathematicians believe that the axioms that are taken as self-evident truths about numbers will never crumble under future scrutiny. The laws of logic used to build upon these foundations, if applied correctly, will in their view produce proofs of statements about numbers that will never be overturned by new insights. Maybe this is philosophically naive, but it is certainly the central tenet of the sect of mathematics.

      There is also the emotional buzz the mathematician experiences in charting new pathways across the mathematical landscape. There is an amazing feeling of exhilaration at discovering a way to reach the summit of some distant peak which has been visible for generations. It is like creating a wonderful story or a piece of music which truly transports the mind from the familiar to the unknown. It is great to make that first sighting of the possible existence of a far-off mountain like Fermat’s Last Theorem or the Riemann Hypothesis. But it doesn’t compare to the satisfaction of navigating the land in between. Even those who follow in the trail of that first pioneer will experience something of the sense of spiritual elevation that accompanied the first moment of epiphany at discovering a new proof. And this is why mathematicians continue to value the pursuit of proof even if they are utterly convinced that something like the Riemann Hypothesis is true. Because mathematics is as much about travelling as it is about arrival.

      Is mathematics an act of creation or an act of discovery? Many mathematicians fluctuate between feeling they are being creative and a sense they are discovering absolute scientific truths. Mathematical ideas can often appear very personal and dependent on the creative mind that conceived them. Yet that is balanced by the belief that its logical character means that every mathematician is living in the same mathematical world that is full of immutable truths. These truths are simply waiting to be unearthed, and no amount of creative thinking will undermine their existence. Hardy encapsulates perfectly this tension between creation and discovery that every mathematician battles with: ‘I believe that mathematical reality lies outside us, that our function is to discover or observe it and that the theorems which we prove and which we describe grandiloquently as our “creations” are simply our notes of our observations.’ But at other times he favoured a more artistic description of the process of doing mathematics: ‘Mathematics is not a contemplative but a creative subject,’ he wrote in A Mathematician’s Apology,