Со спичками не шутят. Владимир Валентинович Трошин

Читать онлайн.
Название Со спичками не шутят
Автор произведения Владимир Валентинович Трошин
Жанр Прочая образовательная литература
Серия
Издательство Прочая образовательная литература
Год выпуска 2020
isbn 978-5-532-04770-9



Скачать книгу

рассуждения подготовили нас к серьезным задачам. Спичечный коробок по форме представляет собой прямоугольный параллелепипед.

      2-125. Как измерить диагональ спичечной коробки с помощью простой линейки? Нужно обойтись без вычислений, без формулы для квадрата диагонали, который равен сумме квадратов трех измерений параллелепипеда. Стороны параллелепипеда измеряются элементарно, а вот диагональ?

      2-126. Воткните в яблоко с двух диаметрально противоположных сторон две спички.

      Если такое яблоко разрезать под некоторым углом α и поворачивать одну половинку относительно другой, то угол между спичками будет изменяться и за пол-оборота достигнет наименьшего значения (какого?).

      Разрежьте это яблоко с таким расчетом, чтобы значение наименьшего угла не могло превысить 900. Совместите обе половинки так, чтобы между спичками образовался угол 1200. Считайте, что яблоко имеет точную форму шара.

      2-127. Сколько всего спичек может быть получено из деревянного куба, ребро которого 1 метр? Каждая спичка должна иметь длину 5 см и поперечное сечение 2×2 мм. Вопрос нужно решить чисто теоретически, считая распил идеальным, то есть на него объем не расходуется.

      Теперь еще раз пройдемся по фигурам, увеличивая постепенно количество используемых спичек.

      2-128. Из 4 спичек сложен крест, но не так как в задаче 2-6. Получить маленький квадратик в центре не получится. Хотя требование аналогичное: переместить одну спичку так, чтобы получился квадрат.

      2-129. Из 5 спичек сложена маленькая стрела. Переложите 3 спички так, чтобы стрела поменяла направление на противоположное.

      2-130. Из 6 спичек сложен правильный шестиугольник, у которого все углы тупые по 1200. Требуется переложить 4 спички так, чтобы получились треугольники с острыми углами.

      2-131. Как переложить 2 спички так, чтобы из трех треугольников получилось два треугольника.

      2-132. Из 8 спичек сложите 3 квадрата.

      2-133. Переложите 2 спички так, чтобы получилось три квадрата одного размера.

      2-134. Переложите 3 спички, чтобы вместо трех треугольников получить три четырехугольника одного размера.

      2-135. Из 9 спичек составьте 7 треугольников, лежащих в одной плоскости. Ломать, разрезать и накладывать спички друг на друга не допускается. Есть два решения.

      2-136. Из заданной фигуры получите два равносторонних треугольника, убрав 4, или 3, или 2 спички.

      2-137. Из 10 спичек сложены три квадрата. Такая фигура уже была в задачах 2-27 и 2-28, но для нее есть еще задачи.

      а) переложите 2 спички так, чтобы получился один большой и один маленький квадрат;

      б) добавьте 2 спички так, чтобы получилось четыре одинаковых маленьких квадрата и еще один большой квадрат.

      2-138.