Название | Гиперболический рост населения Земли и эволюция человека |
---|---|
Автор произведения | Анатолий Васильевич Молчанов |
Жанр | Биология |
Серия | |
Издательство | Биология |
Год выпуска | 2020 |
isbn |
Приведенные выдержки воспринимаются с трудом, но даже если не вникать в смысл этой физикалистской абракадабры можно все-таки понять, что Панов определяет сингулярность Дьяконова как предельную точку последовательности дат своих планетарных революций. Такая инициатива представляется выражением самонадеянности, некомпетентности и бестактности ее автора. Здесь важно не только то, что, совмещая биосферную и историческую сингулярность, Панов приходит к абсурдным, апокалиптическим результатам.
Даже и сам термин «сингулярность» Панов понимает неправильно. Действительно, для того, чтобы можно было говорить о сингулярной точке истории, эволюции необходимо, чтобы существовал количественный показатель исторического или эволюционного развития, который бы неограниченно возрастал за конечный промежуток времени. Поскольку подобный показатель в построениях Панова отсутствует, то ни о какой вертикали Снукса – Панова, ни о каком режиме с обострением в первой четверти XXI века – говорить не приходится.
Так, например, если считать, что ускорение исторического процесса было не гиперболическим, а экспоненциальным, то «переход к вертикали» занимал бы бесконечно долгое время. И речь в таком случае шла бы не о точке сингулярности, а о некотором конечном (в идеальном случае бесконечном) интервале времени – эпохе перемен.
Говорить об исторической сингулярности или сингулярности Дьяконова стало возможным лишь после работ С.П. Капицы, который первым обоснованно связывает эволюцию человека и историю человечества с растущей численностью населения Земли. Согласно принципу демографического императива Капицы именно численность населения Земли в эпоху гиперболического роста и есть та переменная, которая может служить естественной мерой эволюции и развития человечества как системы.
Поскольку в формуле Фёрстера в двадцатых годах XXI столетия ее значение устремляется к бесконечности, понятие «сингулярность Дьяконова» обретает смысл. В таком случае историческая сингулярность или сингулярность Дьяконова может быть также названа «сингулярностью Дьяконова – Капицы».
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.