Буриданов осёл. И как им не стать. Алексей Васильевич Салтыков

Читать онлайн.
Название Буриданов осёл. И как им не стать
Автор произведения Алексей Васильевич Салтыков
Жанр Философия
Серия
Издательство Философия
Год выпуска 2020
isbn



Скачать книгу

где знаки от одного до шести, совершенно невероятно, что выпадет семь. Или бросив кубик, на котором все грани – шестёрки, с вероятностью 6:6 выпадет число 6. С нормальным кубиком выпадение каждой грани подчиняется закону равной вероятности – 1:6. У монеты «орёл» или «решка» выпадет с вероятностью 1:2

      Существует парадокс «Ошибка игрока» звучит он примерно так:

      «В подбрасывании монеты, даже если возможность выпала несколько раз подряд, каждое следующее подбрасывание имеет вероятность 1:2». Это происходит потому, что каждое подбрасывание монеты не имеет связи с предыдущим.

      Большую лепту в основание системы вероятностей внёс английский математик и священник Томас Байес (1702–1761). Это он первый предложил корректировать свои убеждения на основе обновлённых данных! Сегодня его Теорема – одна из основополагающих в Теории вероятностей. Вероятность события в ней оценивается на основе другого статистически взаимосвязанного с ним события. То есть, грубо говоря, чтобы зацвели сады, нужно чтобы пришла весна. Вероятность ожидаемого цветения садов весной равна единице, а зимой – нулю. Но как быть с маловероятными событиями? На сколько можно доказать их абсолютную невероятность, или всё-таки согласиться с хоть мизерным, но шансом вероятности?

      Из примеров подобного рода можно выделить «Теорему о бесконечных обезьянах» Суть её вкратце состоит в допущении, что условная обезьяна (или группа обезьян), ударяя случайным образам по клавишам пишущей машинки, в течение неограниченного времени, рано или поздно напечатает наперёд заданный текст. В примере фигурировал текст «Гамлета». Но является ли изъяном этой теории, что любая вероятность в ней может только стремиться к нулю, но никогда им не стать, даже, если единица будет разделена на бесконечность. Это случай посложнее, чем случай с кубиком, вероятность выпадения граней которого очевидна. Здесь мы имеем дело с бесконечным количеством граней и бесконечным количеством попыток. Что-то не так в этой «обезьяньей» работе. И креационисты уже потирают руки: если вероятность «Гамлета», напечатанного обезьяной имеется, то и чудо возможно! А если не имеется – то и спонтанное зарождение жизни и образование Вселенной тоже невозможно! В реальном воплощении вероятность случайного набора текста «Гамлета» абстрактной обезьяной (по данным Википедии) равна 1:3,4×10183946. Это почти ноль. Но не он.

      Начиная приближаться к нулю, вероятность всё более противоречит здравому смыслу. Но отложим Теорию вероятностей, и поразмышляем над ситуацией. Текст «Гамлета» – сознательное произведение. Создано не случайным встряхиванием букв или слов. Буквы соединены в слоги и слова принципиальным, а не случайным образом. Иногда только так, а не иначе. Слова имеют свой смысл в отдельности и в совокупности, расставлены по своим местам тоже не случайным образом. Весь текст имеет свой уникальный смысл – сюжет, развязку и т. д. Художественную ценность. Всё это фильтры, через которые прошли нужные слова, и не прошли ненужные.

      Фильтр сознательности – вот чего не хватает