American Woman's Home: Or, Principles of Domestic Science. Гарриет Бичер-Стоу

Читать онлайн.
Название American Woman's Home: Or, Principles of Domestic Science
Автор произведения Гарриет Бичер-Стоу
Жанр Языкознание
Серия
Издательство Языкознание
Год выпуска 0
isbn 4057664647115



Скачать книгу

have become unconscious of the vileness of the air!"

      There is a prevailing prejudice against night air as unhealthful to be admitted into sleeping-rooms, which is owing wholly to sheer ignorance. In the night every body necessarily breathes night air and no other. When admitted from without into a sleeping-room it is colder, and therefore heavier, than the air within, so it sinks to the bottom of the room and forces out an equal quantity of the impure air, warmed and vitiated by passing through the lungs of inmates. Thus the question is, Shall we shut up a chamber and breathe night air vitiated with carbonic acid or night air that is pure? The only real difficulty about night air is, that usually it is damper, and therefore colder and more likely to chill. This is easily prevented by sufficient bed-clothing.

      One other very prevalent mistake is found even in books written by learned men. It is often thought that carbonic acid, being heavier than common air, sinks to the floor of sleeping-rooms, so that the low trundle-beds for children should not be used. This is all a mistake; for, as a fact, in close sleeping-rooms the purest air is below and the most impure above. It is true that carbonic acid is heavier than common air, when pure; but this it rarely is except in chemical experiments. It is the property of all gases, as well as of the two (oxygen and nitrogen) composing the atmosphere, that when brought together they always are entirely mixed, each being equally diffused exactly as it would be if alone. Thus the carbonic acid from the skin and lungs, being warmed in the body, rises as does the common air, with which it mixes, toward the top of a room; so that usually there is more carbonic acid at the top than at the bottom of a room. [Footnote: Prof. Brewer, of the Tale Scientific School, says: "As a fact, often demonstrated by analysis, there is generally more carbonic acid near the ceiling than near the floor."] Both common air and carbonic acid expand and become lighter in the same proportions; that is, for every degree of added heat they expand at the rate of ¼80 of their bulk.

      Here, let it be remembered, that in ill-ventilated rooms the carbonic acid is not the only cause of disease. Experiments seem to prove that other matter thrown out of the body, through the lungs and skin, is as truly excrement and in a state of decay as that ejected from the bowels, and as poisonous to the animal system. Carbonic acid has no odor; but we are warned by the disagreeable effluvia of close sleeping-rooms of the other poison thus thrown into the air from the skin and lungs. There is one provision of nature that is little understood, which saves the lives of thousands living in unventilated houses; and that is, the passage of pure air inward and impure air outward through the pores of bricks, wood, stone, and mortar. Were such dwellings changed to tin, which is not thus porous, in less than a week thousands and tens of thousands would be in danger of perishing by suffocation.

      These statements give some idea of the evils to be remedied. But the most difficult point is how to secure the remedy. For often the attempt to secure pure air by one class of persons brings chills, colds, and disease on another class, from mere ignorance or mismanagement.

      To illustrate this, it must be borne in mind that those who live in warm, close, and unventilated rooms are much more liable to take cold from exposure to draughts and cold air than those of vigorous vitality accustomed to breathe pure air.

      Thus the strong and healthy husband, feeling the want of pure air in the night, and knowing its importance, keeps windows open and makes such draughts that the wife, who lives all day in a close room and thus is low in vitality, can not bear the change, has colds, and sometimes perishes a victim to wrong modes of ventilation.

      So, even in health-establishments, the patients will pass most of their days and nights in badly-ventilated rooms. But at times the physician, or some earnest patient, insists on a mode of ventilation that brings more evil than good to the delicate inmates.

      The grand art of ventilating houses is by some method that will empty rooms of the vitiated air and bring in a supply of pure air by small and imperceptible currents.

      But this important duty of a Christian woman is one that demands more science, care, and attention than almost any other; and yet, to prepare her for this duty has never been any part of female education. Young women are taught to draw mathematical diagrams and to solve astronomical problems; but few, if any, of them are taught to solve the problem of a house constructed to secure pure and moist air by day and night for all its inmates.

      The heating and management of the air we breathe is one of the most complicated problems of domestic economy, as will be farther illustrated in the succeeding chapter; and yet it is one of which, most American women are profoundly ignorant.

       Table of Contents

      SCIENTIFIC DOMESTIC VENTILATION.

      We have seen in the preceding pages the process through which the air is rendered unhealthful by close rooms and want of ventilation. Every person inspires air about twenty times each minute, using half a pint each time. At this rate, every pair of lungs vitiates one hogshead of air every hour. The membrane that lines the multitudinous air-cells of the lungs in which the capillaries are, should it be united in one sheet, would cover the floor of a room twelve feet square. Every breath brings a surface of air in contact with this extent of capillaries, by which the air inspired gives up most of its oxygen and receives carbonic acid in its stead. These facts furnish a guide for the proper ventilation of rooms. Just in proportion to the number of persons in a room or a house, should be the amount of air brought in and carried out by arrangements for ventilation. But how rarely is this rule regarded in building houses or in the care of families by housekeepers!

      The evils resulting from the substitution of stoves instead of the open fireplace, have led scientific and benevolent men to contrive various modes of supplying pure air to both public and private houses. But as yet little has been accomplished, except for a few of the more intelligent and wealthy. The great majority of the American people, owing to sheer ignorance, are, for want of pure air, being poisoned and starved; the result being weakened constitutions, frequent disease, and shortened life.

      Whenever a family-room is heated by an open fire, it is duly ventilated, as the impure air is constantly passing off through the chimney, while, to supply the vacated space, the pure air presses in through the cracks of doors, windows, and floors. No such supply is gained for rooms warmed by stoves. And yet, from mistaken motives of economy, as well as from ignorance of the resulting evils, multitudes of householders are thus destroying health and shortening life, especially in regard to women and children who spend most of their time within-doors.

      The most successful modes of making "a healthful home" by a full supply of pure air to every inmate, will now be described and illustrated.

      It is the common property of both air and water to expand, become lighter and rise, just in proportion as they are heated; and therefore it is the invariable law that cool air sinks, thus replacing the warmer air below. Thus, whenever cool air enters a warm room, it sinks downward and takes the place of an equal amount of the warmer air, which is constantly tending upward and outward. This principle of all fluids is illustrated by the following experiment:

      Take a glass jar about a foot high and three inches in diameter, and with a wire to aid in placing it aright, sink a small bit of lighted candle so as to stand in the centre at the bottom. (Fig. 28.) The candle will heat the air of the jar, which will rise a little on one side, while the colder air without will begin falling on the other side. These two currents will so conflict as finally to cease, and then the candle, having no supply of oxygen from fresh air, will begin to go out. Insert a bit of stiff paper so as to divide the mouth of the jar, and instantly the cold and warm air are not in conflict as before, because a current is formed each side of the paper; the cold air descending on one aide and the warm air ascending the other side, as indicated by the arrows. As long as the paper remains, the candle will burn, and as soon as it is removed, it will begin to go out, and can be restored by again inserting the paper.

      [Illustration: Fig. 28]

       [Illustration: Fig. 29]

      This illustrates the mode by which