Размышления о тьюторстве. Наталия Рыбалкина

Читать онлайн.



Скачать книгу

задачу, связанную с проблемой самоопределения, можно было бы обозначить как умение пользоваться принципом самоопределения или рамкой самоопределения в выстраивании представлений о мире, о себе и планировании своих действий. А педагогическую задачу – как создание условий для ее актуализации и передачу средств ее решения.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

      Примечания

      1

      В буквальном переводе с санскрита «парампара» означает «непрерывная цепь преемственности».

      2

      СМД – системо-мыследеятельностная методология.

/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0aHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCAC1AKQDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD3+iiigAooooAKKKKACiiigAooooAKKKKACiuL8T/ES00fUG0TSbSbWPEDABbK2UkRk9DI3RRyM1W/4Q3xVqzrdaz42v7WXbxbaSiwRpnsSclj7mgDvMjOM80tcNF8KfDwcz3c+rXt4RzdT6jKJM+vykD9K0vDvhO88PX8z/8ACS6pf2DLiK0vWEnln/fPzGgDp6KKKAPMtX1PxfqvxRvvDeha9b6bbWunx3RMlks2WJAI5575rV+Fmv6t4i8M3lxrVylzdQahNbeYkQjBVNuOB9TXCeGfEPiW78a+IPGFj4NudStr7bZweVdxoI1iO1gd3JJIB6Cug+Cs93Ba+I9F1CwezvLTUTPLG8gbHnDcF49AvX3oA9TooooAKKKKACiiigAooooAKQZ5zS0UAFFFFABXDeOfE+pw6pp/hPw0yLruo5kM7ruS0gH3pGHvggVveKvEtt4X0ZryYGW4kPlWlsgy9xMfuoo9TWd4A0O90vw+t3rOX12/c3F9I+CwZuiD0CjAx9aAL/hjwpp3hayaK1Uy3Ux33N5L80s7nqWY89eg7Vu0UUAcNf8AgTW7y+ubiPx7rltHLIXjhjCBYgf4enIqsnw78QK4b/hY2vnHbCf1r0KigDi08E62kTqfHuuszDG4pDx9PkqC38F+K7bGPiJqEgBziWyibP49a7uigDj4/CevW9usFn4r+yorFyINMhQEnkkgetJH4T8QRXstzF4tETTYMxj0uFWkIGAWPfHbNdjRQB4fry/EzTNbuLO08YiaCPbskezRWOVB5AU+tFdN4qZh4luwGIHyd/8AYWigD0qiiigAooooAKKKKACiiigAoorB8ZeJY/Cfhm61VojPMuI7eAdZZWOEX8/0zQByOmRP45+KOo399u/svwxMLext84DXOMtI3rjt9RXplcz4E8OP4b8MxxXTeZqV27Xd/L/fnflvy4H4V01ABRRRQAUUV5/4q8Qa9q2uDwt4O/dToR/aOqlQ0dkp52jPBcjt24/AAb418XapNrH/AAhvhGIy65NGHuLvPyWEZI+ZuOpB4+orudOtpbPTba2nupLqWKMI88n3pCByx+tZHhTwjY+FLF44Ge4vbhvMvL2XmS4f+8x7ew7V0FABRWFqvii303WrHR4bae91C7OfJgAPlRjq7k/dH863aAPLfF7X48UXnkKDH8mOB/cWiuL+JcTN8QdUIvmjz5Xy56fukooA+hqKKKACiiigAooooAKKKKACvPfEEv8AwkfxR8P6JbSMYdG3anfFfuh8bYlJ9cknHpXdX12thp9zeOpZIImlYDqQoJx+lcF8JdEubXTNS8R3Ux3+Ibg3wtipHkKSxAJPUkN+goA9FooooAKKhvLu3sLOa8u5kht4EMkkjnAVRySa4jwv4n17xf4omv7G3Np4Shj2RtdQFZbqT+8ncL/nvwAdJ4ntddvdHa28P3ttZXkjAG4nQtsTuVA/i+tTaDodp4e0iLT7NcImWdj1kc8sx9ya06KACuW8TeKZLO4GiaHEl74huEzHBu+WBScebIeyjrjqelZfjjxnfQTf8I14RiW/8TTj5kUgraR95HPQHpgH1z6Z1PBPgm08IWEhMjXeq3Z8y+v5eZJn69f7o7CgCz4Q8NHw3pLR3N0b3U7mQz3t4y4aaRjk/gOgHpXQUUUAfOvxJ8R2dr8QNVgexSRkaMFjjn92tFM+I3hHX9R8f6td2fgue9t5HQpcI5xJ8ijP5iigD6NooooAKKKKACiiigAooooA88+KLXepzeHfCVvK0MWt3hW5mUkMIogHZR9f6V6BHGsUSRIMKihQPYVweiuNd+L2tanEry2Wk2a6asj/AHUuNxaQIPXBAJrv6ACo7i4htLeS4uJUihjG53dsBR6k1JWF4i8K2fiefTTqEsrWtlMZ2tAR5U7Y+XeO4B5xQBzENnffEq5+16lvtfCUUv8Ao1kMq+o7TxJL6R5GQo6969CRFjRURQqKMKoGAB6UqqFUKoAUDAAHApaACimrIjlgjqxU4YA5wfQ06gDH0Lwxpnh5rySxhbz72Zp7meRi0kjE55J7DsK2KKKACiiigAooooAKKKKACiis3xBrVt4d0G91e7DGG1j3lVGSx6BR7kkD8aANKiuD0zQ/GOt2a6lrHie90i4uPnGnWMMO22XJwpZlYs2MZPHNWPDeravpniWfwr4kvkvJzCLjTr4xCNrqPkOpUfLvQgE45IYHFAHaVHPMlvbyTyHEcaF2PoAMmpK4X4v6xfaL8N9QuNPdY5pCkDOeqo52sR74OPxoAg+EEU03ha916dvm1zUZ78J/cUttA/8AHa7TVdWsdD02bUdSuY7a1hGXkkOB9Pcn0qlo9lp/hLwha2qyeVY6fbDdJIeigZZj+prltKtL34gasdY1yzeDw/aS50zT5kwLojpcSA8/7qkd6AO00XU/7Z0i31EW01ss671imGHC54JHbI5/Gr9HQYFct4l8e6R4cu004mS91iVcw6faoXlfPTOAdv40AdTXHeJPGUsOonw54biS/wDEbrkxknyrRCP9ZK2MDHGF6nIqrofxMtrm7j0/xHpl14e1GaUpBFeIwSUdRiQqFyfTNdbY6Pp+nXFzc2tsiXF026ebGXkPbJ68UAZXg7wonhXTZUku5b7UbuUz315IeZpT1OOwHQCujoooAKKKKACiiigAooooAKKKKACuV+IVldXXhRp7OB7mewuYL5bZeswikVyn4gGuqooAoaNrNhr+lQanptwk9rMuVdCDg9wcdCDwRXLXV1Br/wAUdHj02RZl0OG4e+lQ5WNplVUj3Dq3BJHoBV2++Gvg/Ub6a9udFjM8zbpGjlkjDN64VgM/hW3o2iaZ4e09bDSbKKztVO4RxDAJ9T3J4HJoA0K8t8dA6n8W/B2hXo8/SJo5p5LRj8jyKrFWYd8YFepV5r4bxrnxn8TauQZrbTreKwtJSMordZAp6ZByDj1oA9Gmt4biBoJokkiYYKMMg/hUlFFADZH2RO+M7VJxXm3wcT+1dF1DxbeRhtU1e8kaSUjoiHaqr/sjBr0mRBLE8Z6MpU/jXl3wj1CPQrXUfBOpzxwX2l3rx26ysEa4icllZAfvc7untQB1XxF0Sy13wFrFvexhlitpLiJuhSRFLKw/Eflmj4cazca/8PdF1K7ObiWDbI2MbipK5/Hbms/4q+JbbQ/A+o2yyJJqN/Cba2tQQZJDJ8uQvUgAn8q1vAOjS+H/AAHo2lzn99DbDzBjGGbLEfgTj8KAOjooooAKKKKACiiigAooooAKKKKACmSzRQqGlkSNWYKC7AZJOAPqTVXV9XsdC0ufUtSuFt7SBdzyN+gHqSeAK8n8Qxa14iGjeKdYE1hZrrFkul6WTgqjTLmWYd3YYwuflHuTQB7LSF1VlUsAzfdBPJpa8++JNhc6nq3hG0s7+Wwun1CUw3MWN0brBIw4PUEgAjuCaAO+lljgheaZ1jijUs7scBQOSSfSuC+EEguPCuoXiIyw3Wr3c8JI4dGfgj1H+FYHiz4gPH4G1rw9r1o9t4oaE2YtoQSlz5nyrLEe6HOSOozivQvBmjv4f8GaRpUn+strVFk/3sZb9SaAN2iiigDP1zVotC0O91WeKaWK0iMrpCu52A9BXi+q+O/BHj7S4bvVfD+uW19G5WC7sbfdLGQeAso6/Q17tJGksTRyKGRwVZSOCD1FecfCSFbE+LNLtzixsdalhto/7igDigDkbDXfBHhQL4guNI8XalfWqCNLzVbd3MWfugMx2r7Eetew+Gddi8TeG7DWoYXhju4vMEbnJXnGP0ri/jp8/wAOGgBOZ72CMKDy2W6AdzXoOn2sNlp1ta28QihhiVEjAxtAGAKALNFFFABRRRQAUUUUAFFFFABVbUL+30vTri/umZbe3jMkhVCxCgZOAOT+FWaKAOA0fSL/AMaapb+JfE1s1vYQN5mlaPIPuccTzDvIc8D+H61e+I//ACB9I/7Dlh/6PWuxriRu8VfEXcCraT4cyOmRLeuOfb92n5F6AO2rj/Fv/I4eCP8AsIzf+k0tdhWB4w0ebV9BkNk3l6laMt1ZSgciVDuC59GAKn2Y9elAHDfE3TJfF3jjw54Zs5ILeaNJb1r4RCSW2Kj5B14UsBweuB6V2HhTxNdalNcaLrdr9j1+xUG4jUHy5kPAmibup9OoOQa574XXNz4g1PxF4ukQpa6pJDHbxv8Afj8pCrr9AxOPXGa9IwM5wM4xmgBaKKKACvOfh0psfF/jmwuQYrmTVGu44nGGeFujgd1PTIr0avP7Rz/wvvUUbAz4fi2+484/40AQ/EG3a/8AHvgGzfD2v26WeSLr8yIGUkegwea9GrzSwxeftC6sZZN/2HSI1iRjnYWKkkenX9a9LoAKKKKACiiigAooooAKKKKACiiigDE8W67/AMI74cub6NPNumKw2kIPMs7naij8Tk+wNHhPQR4c8OWuntIZbnBlu5ycmad/mkcn3Yn8MVjr/wAVR8QzJ97TPDmVHo9868/XZGw/F/auzoAztW1yx0VrFb2Qo17cpaQAKTukbOBx9DVPxrqVzo/gnWtQswpuLe0kePd0Bx1rD+I07xXfg1FUHzPENuDkf7L1g/GPW7eK78OaK948CvereXZB+X7PHkkMO+T0HtQBY+Hdo3gubTtFkuJZbHW7Nb20MmP3dwFBmTp/FuVgP9lq9PrynVdZ1L4l2af8IfZGG30u4S9ivr+EoJ5UBMaxAkcE8FjjAPvXofh3WofEOgWmqQAqsyfOjAgo4JV1Oe4YEfhQBp0UUUAFea+KIRp/xs8G6hbSMk2oQ3Fpcr2eNFLj9T+gr0qvL/i5qp8M6h4Z8TG3aWOxluYiwP3WkhIX9R+lAEvwrgju9W8Za5Mxmv5dZmtTMxziKMjYo9uf0Fel1w/wh0+Gx+GekyRlmkvEN1O7dXkc5JP6D8K7igAooooAKKKKACiiigAooooAKq6k16mmXLabHFJfCNvISZiqF8cbiO2atUUAYvhfw+vhzw7Bp3mmW4wZLm4/immbl3PuST+lc94f1rWNI8b3HhHXrtb1ZoWu9NvmUI8iA/NGwHBZfUdq7uuf8U+D9M8WW8IvBLDeWxL2l7buUlt345U/gODxQByXxhvbyyPhKTTrd7m9TWUkit1B/elVbj9f1o0r4f3viHxTL4p8d2to12iLFZ2NvIXiiQZ+9n7xyT7Ves18eeG76KC8jh8T6UX2x3CFYruH0ZwxCsPXHNd/QBHGiQqkMUQSJFwoUAKoHQAVz+i6LfaN4n1hojEdEvitzFHuIaCc8SALjG1sBs56k8c5rpKKACiq81/Z28mye7gifGdryBTj8aoal4o0LSLN7u/1a0hhTqfMDH8AMk/gKANeuE+LPhS98YeEI9P0+FZblLyKUBmC4XkMefY128E0dzbxzxEtHKodCQRkEZHB5p0j+XE77WfapO1Rkn2HvQAy2t4rS1htoEVIYkCIqjAUAYAFVda1aHQ9GutTnhuJordN7R26b5GGccDvXEz+NvGmoXa22heA7qHD7ZJ9WlESAewBy