Мозг материален. Ася Казанцева

Читать онлайн.
Название Мозг материален
Автор произведения Ася Казанцева
Жанр Биология
Серия
Издательство Биология
Год выпуска 2019
isbn 978-5-17-114664-1



Скачать книгу

устройствах их от 16 до 22). Все электроды закреплены в гибком силиконовом стержне, введенном внутрь улитки. Высокие частоты передаются туда, где мозг ожидает обнаружить высокие частоты. Низкие – туда, где низкие.

      Конечно, этот прибор не позволяет воссоздать все богатство звуковой гаммы. Носители кохлеарных имплантатов способны распознавать мелодии заметно хуже, чем обычные люди, и часто полностью перестают слушать музыку, так как она больше не приносит им эстетического наслаждения[71]. Но принципиально, что кохлеарного имплантата достаточно для восприятия человеческой речи. Даже если ребенок был глухим от рождения, с имплантатом он способен научиться понимать собеседников и говорить самостоятельно. Исследователи не дают конкретных рекомендаций насчет оптимального возраста для вживления электродов, подчеркивая большие индивидуальные различия между испытуемыми[72],[73], но в целом работает принцип “лучше не затягивать”: тому, кто обрел слух в два года, будет проще научиться говорить, чем тому, кто получил его в четыре; им обоим будет намного проще, чем ребенку, прооперированному в восемь лет, но даже он будет обладать серьезными преимуществами по сравнению с тем человеком, чью операцию отложили до двенадцати.

      Активно разрабатываются и имплантаты для борьбы со слепотой. Принцип в том, чтобы переводить изображение от видеокамеры, прикрепленной к очкам, или от вживленной прямо в глазное яблоко решетки с фотодиодами в электрические импульсы. Они, в свою очередь, передаются на нейроны сетчатки. Или в латеральное коленчатое тело таламуса (промежуточную станцию обработки зрительной информации). Или прямо в зрительную кору. Сегодня уже есть устройства, одобренные для клинического применения[74], и еще больше новых подходов обсуждается, патентуется и испытывается на животных. Но пока что разработчики сталкиваются с гигантским количеством технических проблем[75]. Для сколько-нибудь качественного распознавания образов нужно вживить очень много электродов близко друг к другу. Часть из них будет выходить из строя, нервные клетки будут гибнуть, и, в конце концов, вся эта система от многочасовой работы просто будет сильно нагреваться, что тоже не очень‐то полезно для живой ткани. Поэтому на сегодняшний день человек с таким имплантатом может в лучшем случае определять направление источника света и отмечать крупные движущиеся объекты. Ни об узнавании предметов, ни тем более о чтении речь пока не идет.

      Значительно лучше обстоят дела с теми заболеваниями, для лечения которых не нужна ювелирная точность вживления электродов в конкретный нейрон, а достаточно простимулировать какую‐то относительно крупную область мозга. В конце восьмидесятых французские ученые Алим-Луи Бенаби и Пьер Поллак сосредоточились на вживлении электродов для борьбы с болезнью Паркинсона – и достигли в этом таких впечатляющих



<p>71</p>

McDermott, H. J. (2004). Music perception with cochlear implants: a review. Trends in amplification, 8 (2), 49–82.

<p>72</p>

Peterson, N. R. et al. (2010). Cochlear implants and spoken language processing abilities: review and assessment of the literature. Restorative Neurology and Neuroscience, 28 (2), 237–250.

<p>73</p>

Svirsky, M. A. et al. (2000). Language development in profoundly deaf children with cochlear implants. Psychological Science, 11 (2), 153–158.

<p>74</p>

Finn, A. P. et al. (2018). Argus II retinal prosthesis system: a review of patent selection criteria, surgical considerations, and post-operative outcomes. Clinical Ophthalmology, 12, 1089–1097.

<p>75</p>

Lewis, P. M. et al. (2015). Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses. Brain Research, 1595, 51–73.