Man's Place in the Universe. Alfred Russel Wallace

Читать онлайн.
Название Man's Place in the Universe
Автор произведения Alfred Russel Wallace
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn



Скачать книгу

apparent radial velocity is, therefore, increased or diminished by a known amount. Observations of this kind were made by Dr. Vogel, Director of the Astrophysical Observatory at Potsdam, showing, in the case of three stars, of which ten observations were taken, a mean error of about two miles per second; but as the stellar motions are more rapid than those of the planets, the proportionate error is no greater than in the example given above.

      The great importance of this mode of determining the real motion of the stars is, that it gives us a knowledge of the scale on which such motions are progressing; and when in the course of time we discover whether any of their paths are rectilinear or curved, we shall be in a position to learn something of the nature of the changes that are going on and of the laws on which they depend.

Invisible Stars and Imperceptible Motions

      But there is another result of this power of determining radial motion which is even more unexpected and marvellous, and which has extended our knowledge of the stars in quite a new direction. By its means it is possible to determine the existence of invisible stars and to measure the rate of otherwise imperceptible motions; that is of stars which are invisible in the most powerful modern telescopes, and whose motions have such a limited range that no telescope can detect them.

      Double or binary stars forming systems which revolve around their common centre of gravity were discovered by Sir William Herschel, and very great numbers are known; but in most cases their periods of revolution are long, the shortest being about twelve years, while many extend to several hundred years. These are, of course, all visible binaries, but many are now known of which one star only is visible while the other is either non-luminous or is so close to its companion that they appear as a single star in the most powerful telescopes. Many of the variable stars belong to the former class, a good example of which is Algol in the constellation Perseus, which changes from the second to the fourth magnitude in about four and a half hours, and in about four and a half hours more regains its brilliancy till its next period of obscuration which occurs regularly every two days and twenty-one hours. The name Algol is from the Arabic Al Ghoul, the familiar 'ghoul' of the Arabian Nights, so named—'The Demon'—from its strange and weird behaviour.

      It had long been conjectured that this obscuration was due to a dark companion which partially eclipsed the bright star at every revolution, showing that the plane of the orbit of the pair was almost exactly directed towards us. The application of the spectroscope made this conjecture a certainty. At an equal time before and after the obscuration, motion in the line of sight was shown, towards and away from us, at a rate of twenty-six miles per second. From these scanty data and the laws of gravitation which fix the period of revolution of planets at various distances from their centres of revolution, Professor Pickering of the Harvard Observatory was able to arrive at the following figures as highly probable, and they may be considered to be certainly not far from the truth.

      When it is considered that these figures relate to a pair of stars only one of which has ever been seen, that the orbital motion even of the visible star cannot be detected in the most powerful telescopes, when, further, we take into account the enormous distance of these objects from us, the great results of spectroscopic observation will be better appreciated.

      But besides the marvel of such a discovery by such simple means, the facts discovered are themselves in the highest degree marvellous. All that we had known of the stars through telescopic observation indicated that they were at very great distances from each other however thickly they may appear scattered over the sky. This is the case even with close telescopic double stars, owing to their enormous remoteness from us. It is now estimated that even stars of the first magnitude are, on a general average, about eighty millions of millions of miles distant; while the closest double stars that can be distinctly separated by large telescopes are about half a second apart. These, if at the above distance, will be about 1500 millions of miles from each other. But in the case of Algol and its companion, we have two bodies both larger than our sun, yet with a distance of only 21/4 millions of miles between their surfaces, a distance not much exceeding their combined diameters. We should not have anticipated that such huge bodies could revolve so closely to each other, and as we now know that the neighbourhood of our sun—and probably of all suns—is full of meteoric and cometic matter, it would seem probable that in the case of two suns so near together the quantity of such matter would be very great, and would lead probably by continued collisions to increase of their bulk, and perhaps to their final coalescence into a single giant orb. It is said that a Persian astronomer in the tenth century calls Algol a red star, while it is now white or somewhat yellowish. This would imply an increase of temperature caused by collisions or friction, and increasing proximity of the pair of stars.

      A considerable number of double stars with dark companions have been discovered by means of the spectroscope, although their motion is not directly in the line of sight, and therefore there is no obscuration. In order to discover such pairs the spectra of large numbers of stars are taken on photographic plates every night and for considerable periods—for a year or for several years. These plates are then carefully examined with a high magnifying power to discover any periodical displacement of the lines, and it is astonishing in how large a number of cases this has been found to exist and the period of revolution of the pair determined.

      But besides discovering double stars of which one is dark and one bright, many pairs of bright stars have been discovered by the same means. The method in this case is rather different. Each component star, being luminous, will give a separate spectrum, and the best spectroscopes are so powerful that they will separate these spectra when the stars are at their maximum distance although no telescope in existence, or ever likely to be made, can separate the component stars. The separation of the spectra is usually shown by the most prominent lines becoming double and then after a time single, indicating that the plane of revolution is more or less obliquely towards us, so that the two stars if visible would appear to open out and then get nearer together every revolution. Then, as each star alternately approaches and recedes from us the radial velocity of each can be determined, and this gives the relative mass. In this way not only doubles, but triple and multiple systems, have been discovered. The stars proved to be double by these two methods are so numerous that it has been estimated by one of the best observers that about one star in every thirteen shows inequality in its radial motion and is therefore really a double star.

The Nebulæ

      One other great result of spectrum-analysis, and in some respects perhaps the greatest, is its demonstration of the fact that true nebulæ exist, and that they are not all star-clusters so remote as to be irresolvable, as was once supposed. They are shown to have gaseous spectra, or sometimes gaseous and stellar spectra combined, and this, in connection with the fact that nebulæ are frequently aggregated around nebulous stars or groups of stars, renders it certain that the nebulæ are in no way separated in space from the stars, but that they constitute essential parts of one vast stellar universe. There is, indeed, good reason to believe that they are really the material out of which stars are made, and that in their forms, aggregations, and condensations, we can trace the very process of evolution of stars and suns.

Photographic Astronomy

      But there is yet another powerful engine of research which the new astronomy possesses, and which, either alone or in combination with the spectroscope, had produced and will yet produce in the future an amount of knowledge of the stellar universe which could never be attained by any other means. It has already been stated how the discovery of new variable and binary stars has been rendered possible by the preservation of the photographic plates on which the spectra are self-recorded, night after night, with every line, whether dark or coloured, in true position, so as to bear magnification, and, by comparison with others of the series, enabling the most minute changes to be detected and their amount accurately measured. Without the preservation of such comparable records, which is in no other way possible, by far the larger portion of spectroscopic discoveries could never have been made.

      But there are two other uses of photography of quite a different nature which are equally and perhaps in their final outcome may be far more important. The first is, that by the use of the photographic plate the exact positions of scores, hundreds, or even thousands of stars can be self-mapped simultaneously with extreme accuracy, while any number of copies can be made of these star-maps.