Man's Place in the Universe. Alfred Russel Wallace

Читать онлайн.
Название Man's Place in the Universe
Автор произведения Alfred Russel Wallace
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn



Скачать книгу

has its course rippled by three deep concavities, separated from each other by remarkable protuberances, of which the larger and brighter forms the most conspicuous patch in the southern portion of the Milky Way visible in our latitudes.

      'Crossing the equinoctial at the 19th hour of R.A., it next runs in an irregular, patchy, and winding stream through Aquila, Sagitta, and Vulpecula up to Cygnus; at Epsilon of which constellation its continuity is interrupted, and a very confused and irregular region commences, marked by a broad dark vacuity, not unlike the southern "coal-sack," occupying the space between Epsilon, Alpha, and Gamma Cygni, which serves as a kind of centre for the divergence of three great streams; one, which we have already traced; a second, the continuation of the first (across the interval) from Alpha northward, between Lacerta and the head of Cepheus to the point in Cassiopeiæ whence we set out, and a third branching off from Gamma Cygni, very vivid and conspicuous, running off in a southern direction through Beta Cygni, and s Aquilæ almost to the equinoctial, where it loses itself in a region thinly sprinkled with stars, where in some maps the modern constellation Taurus Poniatowski is placed. This is the branch which, if continued across the equinoctial, might be supposed to unite with the great southern effusion in Ophiuchus already noticed. A considerable offset, or protuberant appendage, is also thrown off by the northern stream from the head of Cepheus directly towards the pole, occupying the greater part of the quartile formed by Alpha, Beta, Iota, and Delta of that constellation.'

      To complete this careful, detailed description of the Milky Way, it will be well to add a few passages from the same work as to its telescopic appearance and structure.

      'When examined with powerful telescopes, the constitution of this wonderful zone is found to be no less various than its aspect to the naked eye is irregular. In some regions the stars of which it is composed are scattered with remarkable uniformity over immense tracts, while in others the irregularity of their distribution is quite as striking, exhibiting a rapid succession of closely clustering rich patches separated by comparatively poor intervals, and indeed in some instances by spaces absolutely dark and completely void of any star, even of the smallest telescopic magnitude. In some places not more than 40 or 50 stars on an average occur in a gauge-field of 15', while in others a similar average gives a result of 400 or 500. Nor is less variety observable in the character of its different regions in respect of the magnitudes of the stars they exhibit, and the proportional numbers of the larger and smaller magnitudes associated together, than in respect of their aggregate numbers. In some, for instance, extremely minute stars occur in numbers so moderate as to lead us irresistibly to the conclusion that in these regions we see fairly through the starry stratum, since it is impossible otherwise that the numbers of the smaller magnitudes should not go on continually increasing ad infinitum. In such cases, moreover, the ground of the heavens is for the most part perfectly dark, which again would not be the case if innumerable multitudes of stars, too minute to be individually discernible, existed beyond. In other regions we are presented with the phænomenon of an almost uniform degree of brightness of the individual stars, accompanied with a very even distribution of them over the ground of the heavens, both the larger and smaller magnitudes being strikingly deficient. In such cases it is equally impossible not to perceive that we are looking through a sheet of stars nearly of a size, and of no great thickness compared with the distance which separates them from us. Were it otherwise we should be driven to suppose the more distant stars uniformly the larger, so as to compensate by their greater intrinsic brightness for their greater distance, a supposition contrary to all probability....

      'Throughout by far the larger portion of the extent of the Milky Way in both hemispheres, the general blackness of the ground of the heavens on which its stars are projected, and the absence of that innumerable multitude and excessive crowding of the smallest visible magnitudes, and of glare produced by the aggregate light of multitudes too small to affect the eye singly, must, we think, be considered unequivocal indications that its dimensions in directions where these conditions obtain are not only not infinite, but that the space-penetrating power of our telescopes suffices fairly to pierce through and beyond it.'

      In the above-quoted passage the italics are those of Sir John Herschel himself, and we see that he drew the very same conclusions from the facts he describes, and for much the same reasons, as Mr. Proctor has drawn from the observations of Sir William Herschel; and, as we shall see, the best astronomers to-day have arrived at a similar result, from the additional facts at their disposal, and in some cases from fresh lines of argument.

The Stars in Relation to the Milky Way

      Sir John Herschel was so impressed with the form, structure, and immensity of the Galactic Circle, as he sometimes terms it, that he says (in a footnote p. 575, 10th ed.), 'This circle is to sidereal what the invariable ecliptic is to planetary astronomy—a plane of ultimate reference, the ground-plane of the sidereal system.' We have now to consider what are the relations of the whole body of the stars to this Galactic Circle—this plane of ultimate reference for the whole stellar universe.

      If we look at the heavens on a starry night, the whole vault appears to be thickly strewn with stars of various degrees of brightness, so that we could hardly say that any extensive region—the north, east, south, or west, or the portion vertically above us—is very conspicuously deficient or superior in numbers. In every part there are to be found a fair proportion of stars of the first two or three magnitudes, while where these may seem deficient a crowd of smaller stars takes their place.

      But an accurate survey of the visible stars shows that there is a large amount of irregularity in their distribution, and that all magnitudes are really more numerous in or near the Milky Way, than at a distance from it, though not in so large a degree as to be very conspicuous to the naked eye. The area of the whole of the Milky Way cannot be estimated at more than one-seventh of the whole sphere, while some astronomers reckon it at only one-tenth. If stars of any particular size were uniformly distributed, at most one-seventh of the whole number should be found within its limits. But Mr. Gore finds that of 32 stars brighter than the second magnitude 12 lie upon the Milky Way, or considerably more than twice as many as there should be if they were uniformly distributed. And in the case of the 99 stars which are brighter than the third magnitude 33 lie upon the Milky Way, or one-third instead of one-seventh. Mr. Gore also counted all the stars in Heis's Atlas which lie upon the Milky Way, and finds there are 1186 out of a total of 5356, a proportion of between a fourth and a fifth instead of a seventh.

      The late Mr. Proctor in 1871 laid down on a chart two feet diameter all the stars down to magnitude 91/2 given in Agrelander's forty large charts of the stars visible in the northern hemisphere. They were 324,198 in number, and they distinctly showed by their greater density not only the whole course of the Milky Way but also its more luminous portions and many of the curious dark rifts and vacuities, which latter are almost wholly avoided by these stars.

      Later on Professor Seeliger of Munich made an investigation of the relation of more than 135,000 stars down to the ninth magnitude to the Milky Way, by dividing the whole of the heavens into nine regions, one and nine being circles of 20° wide (equal to 40° diameter) at the two poles of the Galaxy; the middle region, five, is a zone 20° wide including the Milky Way itself, and the other six intermediate zones are each 20° wide. The following table shows the results as given by Professor Newcomb, who has made some alterations in the last column of 'Density of Stars' in order to correct differences in the estimate of magnitudes by the different authorities.

      N.B.—The inequality of the N. and S. areas is because the enumeration of the stars only went as far as 24° S. Decl., and therefore included only a part of Regions VII., VIII., and IX.

      DIAGRAM OF STAR-DENSITY

      From Herschel's Gauges

      (as given by Professor Newcomb, p. 251).

      Upon this table of densities Professor Newcomb remarks as follows:—'The star-density in the several regions increases continuously from each pole (regions I. and IX.) to the Galaxy itself (region V.). If the latter were a simple ring of stars surrounding a spherical system of stars, the star-density would be