Название | Большой роман о математике. История мира через призму математики |
---|---|
Автор произведения | Микаэль Лонэ |
Жанр | Математика |
Серия | Non-fiction. Best |
Издательство | Математика |
Год выпуска | 2016 |
isbn | 978-5-699-97875-5 |
Теэтет, разумеется, не мог предположить, что его исследования позволят со временем построить такие грандиозные сооружения, как «Жеод». И это потрясающее свойство математики, заключающееся в том, что она способна бесконечно развиваться, подметили еще древнегреческие ученые. Они начали постепенно формулировать конкретные вопросы с тем, чтобы создать абсолютно новые и вдохновляющие математические модели. Даже несмотря на то, что эти модели часто казались неприменимыми в то время, когда их разрабатывали, зачастую они становились актуальными спустя уже много лет после смерти своих первооткрывателей.
По сей день примеры платоновых тел можно найти в совершенно разных областях. Так они применяются в качестве формы игральных костей в некоторых играх. Правильная форма обеспечивает равную вероятность выпадения значений, иными словами, каждая грань может выпасть с одинаковыми шансами. Все мы видели шестигранные кубики игральных костей, но более искушенные игроки знают, что в играх используются и остальные четыре типа правильных многогранников, обеспечивающих различную степень вероятности.
Немного дальше от «Жеода» я замечаю детей, играющих в футбол на лужайке в парке Ла-Виллет. Они, конечно же, не задумываются над этим, но и данная игра не появилась бы без открытия Теэтета. Обратили ли они внимание на геометрическую закономерность на их мяче? Большинство футбольных мячей состоят из двадцати шестиугольников и двенадцати пятиугольников. На классических мячах шестиугольники покрашены в белый цвет, а пятиугольники – в черный. И даже если на мяч нанесены какие-либо рисунки, присмотревшись, по швам на нем можно рассмотреть неизменные двадцать шестиугольников и двенадцать пятиугольников.
Усеченный икосаэдр! Так правильно называется форма футбольного мяча. И к его форме предъявляются те же требования, что и к «Жеоду»: форма должна быть наиболее приближена к шарообразной. Разница лишь в том, что создатели этой модели использовали иной способ. Вместо того, чтобы разделять грани, они просто-напросто обрезали вершины. Представьте себе икосаэдр, сделанный из пластилина, и мысленно отрежьте его вершины. После того, как отрезанные вершины будут удалены, на месте двадцати треугольников будут шестиугольники, а на месте удаленных вершин – пятиугольники.
А вот эта маленькая девочка с носовым платком в руках, которая встречается мне на пути на выходе их парка Ла-Виллет? Кажется, она не совсем здорова. Не стала ли она одной из жертв худшего из проявлений микроикосаэдров? Ряд микроорганизмов,