Название | CCENT ICND1 Study Guide |
---|---|
Автор произведения | Lammle Todd |
Жанр | Зарубежная образовательная литература |
Серия | |
Издательство | Зарубежная образовательная литература |
Год выпуска | 0 |
isbn | 9781119288800 |
While we’re at this, in Figure 1.5, each port on the switch is a separate collision domain, and each VLAN would be a separate broadcast domain. So how many collision domains do you see here? I’m counting 12 – remember that connections between the switches are considered a collision domain! Since the figure doesn’t show any VLAN information, we can assume the default of one broadcast domain is in place.
Before we move on to Internetworking Models, let’s take a look at a few more network devices that we’ll find in pretty much every network today as shown in Figure 1.6.
Figure 1.6 Other devices typically found in our internetworks today.
Taking off from the switched network in Figure 1.5, you’ll find WLAN devices, including AP’s and wireless controllers, and firewalls. You’d be hard pressed not to find these devices in your networks today.
Let’s look closer at these devices:
■ WLAN devices: These devices connect wireless devices such as computers, printers, and tablets to the network. Since pretty much every device manufactured today has a wireless NIC, you just need to configure a basic access point (AP) to connect to a traditional wired network.
■ Access Points or APs: These devices allow wireless devices to connect to a wired network and extend a collision domain from a switch, and are typically in their own broadcast domain or what we’ll refer to as a Virtual LAN (VLAN). An AP can be a simple standalone device, but today they are usually managed by wireless controllers either in house or through the internet.
■ WLAN Controllers: These are the devices that network administrators or network operations centers use to manage access points in medium to large to extremely large quantities. The WLAN controller automatically handles the configuration of wireless access points and was typically used only in larger enterprise systems. However, with Cisco’s acquisition of Meraki systems, you can easily manage a small to medium sized wireless network via the cloud using their simple to configure web controller system.
■ Firewalls: These devices are network security systems that monitor and control the incoming and outgoing network traffic based on predetermined security rules, and is usually an Intrusion Protection System (IPS). Cisco Adaptive Security Appliance (ASA) firewall typically establishes a barrier between a trusted, secure internal network and the Internet, which is not secure or trusted. Cisco’s new acquisition of Sourcefire put them in the top of the market with Next Generation Firewalls (NGFW) and Next Generation IPS (NGIPS), which Cisco now just calls Firepower. Cisco new Firepower runs on dedicated appliances, Cisco’s ASA’s, ISR routers and even on Meraki products.
Should I Replace My Existing 10/100 Mbps Switches?
Let’s say you’re a network administrator at a large company. The boss comes to you and says that he got your requisition to buy a bunch of new switches but he’s really freaking out about the price tag! Should you push it – do you really need to go this far?
Absolutely! Make your case and go for it because the newest switches add really huge capacity to a network that older 10/100 Mbps switches just can’t touch. And yes, five-year-old switches are considered pretty Pleistocene these days. But in reality, most of us just don’t have an unlimited budget to buy all new gigabit switches; however, 10/100 switches are just not good enough in today’s networks.
Another good question: Do you really need low-latency 1 Gbps or better switch ports for all your users, servers, and other devices? Yes, you absolutely need new higher-end switches! This is because servers and hosts are no longer the bottlenecks of our internetworks, our routers and switches are – especially legacy ones. We now need gigabit on the desktop and on every router interface; 10 Gbps is now the minimum between switch uplinks, so go to 40 or even 100 Gbps as uplinks if you can afford it.
Go ahead. Put in that requisition for all new switches. You’ll be a hero before long!
Okay, so now that you’ve gotten a pretty thorough introduction to internetworking and the various devices that populate an internetwork, it’s time to head into exploring the internetworking models.
Internetworking Models
First a little history: When networks first came into being, computers could typically communicate only with computers from the same manufacturer. For example, companies ran either a complete DECnet solution or an IBM solution, never both together. In the late 1970s, the Open Systems Interconnection (OSI) reference model was created by the International Organization for Standardization (ISO) to break through this barrier.
The OSI model was meant to help vendors create interoperable network devices and software in the form of protocols so that different vendor networks could work in peaceable accord with each other. Like world peace, it’ll probably never happen completely, but it’s still a great goal!
Anyway the OSI model is the primary architectural model for networks. It describes how data and network information are communicated from an application on one computer through the network media to an application on another computer. The OSI reference model breaks this approach into layers.
Coming up, I’ll explain the layered approach to you plus how we can use it to help us troubleshoot our internetworks.
The Layered Approach
Understand that a reference model is a conceptual blueprint of how communications should take place. It addresses all the processes required for effective communication and divides them into logical groupings called layers. When a communication system is designed in this manner, it’s known as a hierarchical or layered architecture.
Think of it like this: You and some friends want to start a company. One of the first things you’ll do is sort out every task that must be done and decide who will do what. You would move on to determine the order in which you would like everything to be done with careful consideration of how all your specific operations relate to each other. You would then organize everything into departments (e.g., sales, inventory, and shipping), with each department dealing with its specific responsibilities and keeping its own staff busy enough to focus on their own particular area of the enterprise.
In this scenario, departments are a metaphor for the layers in a communication system. For things to run smoothly, the staff of each department has to trust in and rely heavily upon those in the others to do their jobs well. During planning sessions, you would take notes, recording the entire process to guide later discussions and clarify standards of operation, thereby creating your business blueprint – your own reference model.
And once your business is launched, your department heads, each armed with the part of the blueprint relevant to their own department, will develop practical ways to implement their distinct tasks. These practical methods, or protocols, will then be compiled into a standard operating procedures manual and followed closely because each procedure will have been included for different reasons, delimiting their various degrees of importance and implementation. All of this will become vital if you form a partnership or acquire another company because then it will be really important that the new company’s business model is compatible