Название | Основы энергосбережения. Конспект лекций |
---|---|
Автор произведения | Р. Р. Байтасов |
Жанр | Прочая образовательная литература |
Серия | |
Издательство | Прочая образовательная литература |
Год выпуска | 0 |
isbn | 9785448589324 |
где Рэ – электрическая мощность (максимальная) на выходе элемента; Ризл=Еосв х Sэ – мощность светового потока, падающего на поверхность элемента площадью Sэ, расположенную перпендикулярно потоку (Вт); Еосв – освещенность элемента (Вт/м²).
Кремниевые солнечные элементы имеют коэффициент преобразования равный 10…15%. Это значит: при освещённости, равной 0,1 кВт/м² они могут вырабатывать электрическую мощность 1…1,5 Вт с каждого квадратного дециметра площади при создаваемой разности потенциалов около 1 В. Солнечные элементы последовательно соединяют в солнечные модули, которые в свою очередь соединяются в солнечные батареи.
Солнечная фотоэлектрическая установка имеет электрический аккумулятор, что обусловлено непостоянством потока солнечного излучения в течение суток и преобразователь, который необходим для получения переменного тока промышленных параметров (220 В, 50 Гц).
Сдерживающим фактором массового использования фотоэлектрических гелиоустановок является пока что, относительно высокая стоимость, которая для солнечных батарей составляет около 3 долларов США за 1 Вт установленной мощности плюс 2 доллара за 1 Вт вспомогательного оборудования (аккумулятор и преобразователь). Однако при сроке службы солнечных батарей 20 лет и облучённости местности 20 МДж/м² в день стоимость 1 кВт-ч электроэнергии составит примерно 16 центов, что конкурентоспособно с электроэнергией, вырабатываемой дизель-генератором. Уже сейчас фотоэлектрические установки используются для питания электроизгородей, переносной радиоэлектронной аппаратуры, в микрокалькуляторах. В странах СНГ и Западной Европы разработаны и внедряются водонасосные установки для пастбищного водоснабжения с питанием от солнечных батарей мощностью от сотен ватт до нескольких киловатт. Весьма перспективно использование солнечных фотоэлектрических станций для нужд энергоснабжения бытовых производственных объектов, удалённых от линий электропередач.
2.4. Общие сведения о ветроэнергетике
Ветер – это движение воздушных масс атмосферы, вызванное перепадом температуры из-за неравномерного нагрева воздуха. Энергия ветра – это преобразованная в механическую (кинетическую энергию движущихся воздушных масс) энергия Солнца.
Ветровая энергетика – это получение механической энергии от ветра с последующим преобразованием её в электрическую.
Преобразуют энергию ветра в полезную механическую, электрическую или тепловую энергию ветроэнергетические установки (ВЭУ). Энергия ветра зависит от его силы, т.е. величины давления, оказываемого ветром на единицу площади поверхности, расположенной перпендикулярно его направлению. Оценивают силу ветра и его воздействие на ВЭУ, по шкале Бофора. Например, безветрием считается, если скорость ветра составляет 0…0,2 м/с (дым поднимается вертикально) –