Название | Как предсказать курс доллара. Эффективные методы прогнозирования с использованием Excel и EViews |
---|---|
Автор произведения | Владимир Георгиевич Брюков |
Жанр | Ценные бумаги, инвестиции |
Серия | |
Издательство | Ценные бумаги, инвестиции |
Год выпуска | 2017 |
isbn |
Следует заметить, что в зависимости от того, сколько предыдущих значений временного ряда будет включено в уравнение авторегрессии в качестве лаговых (факторных) переменных, принято различать авторегрессионный процесс разного порядка. Так, в формуле 3.1. представлен авторегрессионный процесс первого порядка, который в англоязычной литературе обычно называется словосочетанием Auto Regressive и кратко обозначается как AR(1).
В том случае, когда в авторегрессию первого порядка добавляются лаговые переменные Yt-2 и Yt-3, то его принято обозначать как AR(3), то есть как авторегрессионный процесс третьего порядка. При этом уравнение для AR(3) примет вид (3.2):
где Y t-1, Y t-2 и Y t-3– независимые (факторные) переменные с лагом в один, два и три месяц; b1,b2 и b3 – соответствующие коэффициенты регрессии при лаговых переменных.
3.2. Специфика уравнений авторегрессии со скользящим средним (ARMA)
Помимо авторегрессионных моделей, нам необходимо также познакомиться и с моделями со скользящим средним в остатках, которые в англоязычной литературе обычно называется словосочетанием Moving Average. Полезность моделей со скользящим средним в остатках обусловлена тем, что для стационарного ряда предсказываемую переменную Yt можно представить в виде линейной функции прошлых ошибок (отклонений прогнозов от их фактических значений). Следует иметь в виду, что термин «скользящая средняя» в данном случае не является синонимом скользящей средней, применяемой, например, для сезонного сглаживания уровней динамического ряда. При этом модель со скользящими средними в остатках первого порядка кратко обозначается как МА(1), а ее формула имеет следующий вид:
Объединение в одной модели авторегрессионного процесса AR и модели со скользящим средним в остатках МА приводит к созданию более экономичной модели с точки зрения количества используемых параметров. Эту объединенную модель в англоязычной литературе кратко называют ARMA. Данная аббревиатура произошла от словосочетания ‑ Auto Regressive ‑ Moving Average, что в переводе означает авторегрессионный процесс со скользящими средними в остатках.
Порядок в этой модели в буквенной форме