Название | О границах науки |
---|---|
Автор произведения | Владимир Катасонов |
Жанр | Биология |
Серия | |
Издательство | Биология |
Год выпуска | 2017 |
isbn | 978-5-906960-06-1 |
2. Математическая физика и метафизика
Итак, в лице главных своих мыслителей Античность определилась вполне недвусмысленно: физика не может быть математической в принципе; да и в самой математике господствует дуализм: геометрия, протяженность, континуум не могут быть сведены к числовым арифметическим конструкциям. Как же так получилось, что с XVII века возникает математическая физика, традиция которой непрерывно развивается вплоть до наших дней? Разве пионеры науки Нового времени не знали всех тщательно продуманных аргументов античных философов и ученых?.. Конечно, знали. К этому времени все основные труды греческих авторов уже переведены на латынь и активно изучаются в Западной Европе. Можно ли сказать, что создатели новой науки преодолели аргументацию античных авторов? Вряд ли… Скорее, ими была продолжена новая парадигма, новое направление развития науки, а точнее – новое понимание науки, которое определило и развитие нового типа цивилизации.
Однако вести полемику со старой системой мысли было неизбежно. Главную часть этой трудной работы взял на себя Галилео Галилей. Именно ему принадлежал лозунг: «Книга природы написана на языке математики»[7]. В его знаменитой книге «Диалог о двух главнейших системах мира Птолемеевой и Коперниковой» этот тезис – один из самых важных пунктов дискуссии. Противник галилеевской позиции Симпличио защищает традиционную для того времени аристотелевскую точку зрения: математические соображения хороши лишь в абстрактном пространстве[8], а в реальном материальном мире все обстоит по-другому. В частности, только в математике сфера касается плоскости в одной точке, в действительном же мире касание материальных сферы и плоскости в одной точке невозможно. Порт-пароль Галилея – Сальвиати – отвечает на это: «…Всякий раз, как вы конкретно прикладываете материальную сферу к материальной плоскости, вы прикладываете несовершенную сферу к несовершенной плоскости и говорите, что они соприкасаются не в одной единственной точке. А я вам говорю, что и в абстракции нематериальная сфера, которая является несовершенной сферой, может касаться нематериальной, также несовершенной плоскости, не одной точкой, а частью поверхности. Так что то, что происходит конкретно, имеет место и в абстракции. Было бы большой неожиданностью, если бы вычисления
6
Подробнее см. в моей книге:
7
Точнее эта цитата звучит следующим образом: «Философия написана в величественной книге (я имею в виду Вселенную), которая постоянно открыта нашему взору, но понять ее может лишь тот, кто сначала научится постигать ее язык и толковать знаки, которыми она написана. Написана же она на языке математики, и знаки ее – треугольники, круги и другие геометрические фигуры, без которых человек не смог бы понять в ней ни единого слова; без них он был бы обречен блуждать в потемках по лабиринту»
8
По Аристотелю, математические положения получаются абстракцией от реальных вещей (лат. abstrahiere – уводить, отвлекать, удалять).