Ритм Вселенной. Как из хаоса возникает порядок. Стивен Строгац

Читать онлайн.
Название Ритм Вселенной. Как из хаоса возникает порядок
Автор произведения Стивен Строгац
Жанр Физика
Серия
Издательство Физика
Год выпуска 2004
isbn 978-5-00100-388-5



Скачать книгу

Иными словами, полное знание текущего момента позволяет полностью предсказать будущее – по крайней мере в принципе.

      Соответствующее вычисление осуществляется методически. Зная текущие местоположения всех осцилляторов, мы можем с помощью уравнений Уинфри вычислить их мгновенные скорости. Эти скорости говорят нам о том, как далеко каждый из осцилляторов продвинется на следующем этапе. (Мы исходим из того, что этап представляет собой очень короткий интервал времени и что в течение этого времени все осцилляторы продвигаются неуклонно. В этом случае расстояние, преодолеваемое каждым осциллятором за время цикла, равняется его скорости, умноженной на время цикла.) Таким образом, все осцилляторы могут теперь продвинуться к своим новым фазам, а указанное вычисление повторяется снова и снова, каждый раз продвигаясь вперед на один этап. Если итерации этого процесса выполнять достаточно долго, то, по крайней мере концептуально, мы увидим, какая судьба ожидает эту совокупность осцилляторов.

      То, что я только что описал, называется системой дифференциальных уравнений. С такими уравнениями нам приходится иметь дело каждый раз, когда правила для скоростей зависят от текущих положений. Задачи, подобные этой, изучаются еще со времен Исаака Ньютона (поначалу в связи с движением планет в Солнечной системе). В этом случае каждая планета притягивает все другие планеты, изменяя их местоположения, что, в свою очередь, изменяет гравитационные силы, действующие между ними, и т. д. – зеркальное отражение, во многом похожее на осцилляторы Уинфри с их постоянно изменяющимися фазами, а также с их силами воздействия и чувствительностью. Ньютон изобрел дифференциальное исчисление именно для решения сложных проблем, подобных рассматриваемой нами. Являясь автором одного из величайших достижений западной науки, он решил так называемую «задачу о двух телах» и доказал, что орбита Земли вокруг Солнца является эллиптической, как было предсказано Кеплером до него. Интересно, однако, что «задача о трех телах» оказалась совершенно неподъемной. На протяжении двух столетий лучшие математики и физики мира пытались найти формулы, описывающие движение трех притягивающих друг друга планет, но лишь в конце XIX века французский математик Анри Пуанкаре доказал тщетность таких попыток: таких формул нет и быть не может.

      С тех пор мы осознали, что большинство систем дифференциальных уравнений не имеет решения в том же самом смысле: невозможно найти формулу, которая позволяла бы получить ответ. Однако существует одно замечательное исключение: для линейных дифференциальных уравнений есть решение. Технический смысл слова линейные на данном этапе не должен интересовать нас; гораздо важнее для нас то обстоятельство, что линейные уравнения модульны по своей природе. То есть большую и запутанную линейную задачу всегда можно разделить на меньшие и более обозримые части. Каждую такую часть можно решить по отдельности, а полученные таким образом