Ритм Вселенной. Как из хаоса возникает порядок. Стивен Строгац

Читать онлайн.
Название Ритм Вселенной. Как из хаоса возникает порядок
Автор произведения Стивен Строгац
Жанр Физика
Серия
Издательство Физика
Год выпуска 2004
isbn 978-5-00100-388-5



Скачать книгу

времени оба бегуна продолжают свой бег по дорожке, поэтому выкрикиваемые ими команды продолжают меняться от момента к моменту.

      Такая картина носит слишком общий характер. Она может учитывать импульсные взаимодействия, используемые светлячками, сверчками и нейронами (аналогично внезапному крику, за которым следует молчание в течение остальной части цикла), или постоянное подталкивание и подтягивание феромонов, обнаруженное Макклинток и Стерном для менструального цикла (постоянно меняющаяся последовательность требований ускориться или замедлиться).

      Между тем оба бегуна и прислушиваются к командам своего партнера, и выкрикивают их. Как именно они реагируют на поступающее сообщение, определяется другой функцией Уинфри – функцией чувствительности, которая также бывает разной в разных местах дорожки. Когда чувствительность оказывается высокой и положительной, бегун демонстрирует покладистость и выполняет любые инструкции, которые поступают ему в данный момент. Если же чувствительность равна нулю, он не обращает внимания на эти инструкции. А если чувствительность отрицательна, бегун поступает вопреки принимаемым им инструкциям: он ускоряется, когда от него требуют замедлиться, и наоборот. В данном случае модель также носит слишком общий характер, как и модель Пескина, которую мы обсуждали в предыдущей главе (она предполагала, что осцилляторы всегда продвигаются вперед, когда их подталкивает импульс). В модели Уинфри фазу осциллятора можно либо продвинуть вперед, либо задержать в зависимости от того, на каком этапе своего цикла этот осциллятор принял импульс. Эксперименты показали, что именно так ведут себя реальные биологические осцилляторы.

      Для большей простоты Уинфри предположил, что все осцилляторы в данной популяции имеют одинаковые функции влияния и чувствительности. Но он допустил возможность разнообразия так же, как сделал до него Винер: он предположил, что естественные частоты осцилляторов распределены по всей популяции в соответствии с колоколообразной кривой. Если продолжить нашу аналогию с бегунами на дорожке стадиона, то такую популяцию осцилляторов следовало бы представить в виде клуба любителей бега трусцой, тысячи членов которого вышли одновременно на беговую дорожку. Большинство этих бегунов бегут с некой средней скоростью, но в клубе есть несколько очень быстрых ребят, которые еще в школьные годы блистали на беговой дорожке, и некоторое число «тюфяков», которые после многих лет, в течение которых они вели малоподвижный образ жизни, пытаются восстановить свою былую форму. Другими словами, мы имеем дело с неким распределением естественных способностей членов клуба бегунов точно так же, как мы имеем дело с неким распределением естественных частот осцилляторов в данной биологической популяции.

      Будто перечисленных выше сложностей оказалось недостаточно, нам необходимо определить еще один, последний аспект этой модели: связи между осцилляторами.