Опционы: Разработка, оптимизация и тестирование торговых стратегий. Сергей Израйлевич

Читать онлайн.



Скачать книгу

высоких значений относительно вертикальной оси рис. 1.4.7.

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

iVBORw0KGgoAAAANSUhEUgAAALIAAAAnCAYAAACrIRKYAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAAyFpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IkFkb2JlIFhNUCBDb3JlIDUuNS1jMDE0IDc5LjE1MTQ4MSwgMjAxMy8wMy8xMy0xMjowOToxNSAgICAgICAgIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIgeG1sbnM6eG1wPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvIiB4bWxuczp4bXBNTT0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL21tLyIgeG1sbnM6c3RSZWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZVJlZiMiIHhtcDpDcmVhdG9yVG9vbD0iQWRvYmUgUGhvdG9zaG9wIENDIChXaW5kb3dzKSIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDpCNTJCNTdGM0UxOTExMUU2OTM1NkU5RkNCMkVFNjgzMiIgeG1wTU06RG9jdW1lbnRJRD0ieG1wLmRpZDpCNTJCNTdGNEUxOTExMUU2OTM1NkU5RkNCMkVFNjgzMiI+IDx4bXBNTTpEZXJpdmVkRnJvbSBzdFJlZjppbnN0YW5jZUlEPSJ4bXAuaWlkOkI1MkI1N0YxRTE5MTExRTY5MzU2RTlGQ0IyRUU2ODMyIiBzdFJlZjpkb2N1bWVudElEPSJ4bXAuZGlkOkI1MkI1N0YyRTE5MTExRTY5MzU2RTlGQ0IyRUU2ODMyIi8+IDwvcmRmOkRlc2NyaXB0aW9uPiA8L3JkZjpSREY+IDwveDp4bXBtZXRhPiA8P3hwYWNrZXQgZW5kPSJyIj8+JIkDFwAACYNJREFUeNrsnQuQFMUZx3vv0LuAOXwCIgGCEkAEAY2mjBJjEijFKMFHovERRMAqLNFomaokagkhAY0Y48lpUj6ICUTIia/4QIn4wKAIaowvBAFFECGJx/NOuDu/r/Y3Zafdme3Zg1uW6n/Vv2Z2tmf69e+vv/6m9y4zZswYExBQAP4iPELYUThBOK2YhSkL/RFQACoR8S3CS4VnFrtAQcgBhaC7cKvwLuEG4cdByAGliAHC/3D+LeGqIOSAUsTXhIs4P0T4YrEL1Cb0SUAB+J2wgfOrhZuCkANKERut8092hwIFIQfEoUrYS/hf4XaulQszCfc0cdxk+dBByAFFhYr3GuHJwi0IuE64V8J6qwqxPyIcEYQcsDtgm3AMC7muXLtR+Afh3jnSa2z5SOEkYe890bWoYDTXB22UXHt9JDxXOI9yXSacLXwnJv0y4XssBlsVrRF+e0q4mBEbUHrttUD4c84PEs4Q7pOQ/hXhXOGXS1XIXxE+KbzSub5euC7os0XtpdP143kEtCsxVTiT80EeFlddkK2l6lrooPiu8EPn+oig2Ra319eF37OiB8WA7qnQN3p9hKOEzwvviUn7abFcC307M1n4nPDvwgtZfUYYKbxTeKrJ7np6Vni7yW4ciazLLM5PES6kworbhPc6C4QuefL7KRZouHC68Bnhr4UdnPLvx7Q3n2fdJDw2ZqY5gjI/Sx1OpU4j+V6t3aPCic59t5O+gs9azh8Ia8mzFj8yk6L8adprCkJuRjzjhUdhzYc7Za0WPkz0YGdDw3AXWL67bhgamPIZulPuDFyUfpx/le/aMrBPE+5fiEU+lMprQ74u7EHjDqLRFN8Wni/8ifBdGnWs8HRGqU4jK4XHEKJ5w6rwEOGBllC70LE9EvLT1e9QrNBbwnbCwcITuL4VH/J+4Yk8JxJQX8rVYNXzYDq+k/BtBPUjBK/hpLsRzsk5fNPvUP5ocBxPvrpZZhXfj0CcUzzKP4SIgG97fUB92wuXm+wGnQ/odE3zAOm0H8fRtpt3keF7mTaexmCZTp3qPO9XA1AjfFPYWbgvrtT1lL0nmlwqHMbi0dsiT0TEo4X9TTYI/jQr1N5WKEZxK9c0/W8RhopGg99XkWYeU88KPmsnbLHyHIt4k/KLRPhLLKnm9xgiGmCJ5UQaoT88DOve4NTz+5T1Zp7V2/Lzorrp4NxhfTYx5X+JAa3POVp4uHAtU2+lR/kHMgh826uaxV8jFnEmYlYBf5MBFBmbaAZpcuqgorjWZOPCcezsqZkaBGywqrekGAhR372KAfgh1rea2U2N2SUmu5djbFrX4jTCLH/l2mbL9xloTafG8Yn+bE3Z0dRgTHzAPMJgRrBPfn/jqNbqQc47cWyyBK2C6iZ8P2ZhGZXxXuvadCcvX2zj3g18XoO4D7HawKf8vu1lP6+t0/57Y/kNM8xGZh4XlUQRqhKYph3GI0aD4RjveZ+6RKsxBEsI5an2/oVwXycqYpjFUrkW7eiMHdb16P35vhwj/2+LY6lMCn+smeMBJvsKMyk/4+RrCzc6vkZnnmf5ih9iMSZjwYxTxs2OIN08fJDBzTobH91gcTdZdfQpfyHIOGG6/1H3B5niZ5rcr4Zr4c5CHe0+D7/XJ5pyABZ8trVo7cr9s6x0h3NcUkjUoo3TSHtZliQuyhGdb48RbBwaeL5PfpmY82hlfD4uQi/8YF10/QoLaVum7Qnlt59flkNo7md1CW4QPsQirZnO6JRHeJk8AzyNMYjENIcBNQ7rPCPmvr6IJimvf6bwdQ2uUAOz0ySP9D1ZMC92RNsG3ztCfysenUrISxgph1mLpuM4LufYaE39b1lTumHRYndUcx5r8m98paT8fNGZhlls3T+HZ9tCXplQ/qhukX/czbqvLQOk3qrXRSb79up0K92Rzn1prKuPkKPNOq7/PoPyXE3dn4u5/yQWsvmEWZdCN4/SrqM97+nH0RbyNyyf2Q41bjX+m/XVreyoBfoNpr0Wx70rK1Oduhc5jf17xNNI40WLFYNvWofPNo5nrsfK2eGwP7FoScovk9Dx0XE4YbH7sIyVLLjU+r7g3DsPSz0V66nC+JlTt02E8YZRRn3GWaRfZuX7In7hJDp/ABGELXmsr1t+3/YyRIqG4jLVEoZTLGBg9uH6tpjOvhXuLNxF2GxQitj2MRiL5Y4IP7FEm0Hcy6w1yDBmmzkxz9V+HVrGguQihFCNQNX/OsdqmHKmWL0+AUG0IYa7kDTqr13BoqKayERk8RodUY3Ok19TDkvVbNFQ2bm4E3cwKJpwN15z7l1IWcsp+wTK0WQtcpoZUM/wjBoswwrHDbkGwevz/kjk4CUavjlF+X3byxBt0TwuJ8JhLFcsEvWsVnr3MJH47xDjv1Uzg2iXsrgzuBn9cCsiI9CBdlho3bvKiujELb5NxvpzAPtgbT+1puIIdyL27jReFR2xISbo3Z4IQj0Wt5xn2p2blF9H8lhlPn9L1J6KrnUWbZ1I20h8Nemt0oEs0DYykFZiXUY5jd4DMa6gjJWcNztpyrhegSDXWT6zb/l926uC7zY6kZk3KWv/Fi4kfTCKwXsSgzlfRKwL9Yraq958/iaznNh3nVWfCly09ejLsAZ4ihcyufCEGhPb0mxmxCShks5J2juxzvn+/Zh0Sfmty5FHXYwP95E1yvNhgzX4eiUsqOzpb41Hmh2Oa5Gm/L7t1YCLEaEbcdg+uEm7WsRDEfFIDxEb4sQaN78uR3tFM8/SHHW0r3Vg9lyQYOl1zTXZd6/Fl6xRtqegzKlbqeE6RPWqFRPfVdDFrMb9r/TMqxyXsaaF+fZkBluTkEbzafQV8lSc7dV7kJBXM22tKNHyTyN+/LT5/9/Q7Wyoa/UAs8laFupxoUSdFdrRrseRtiU4KoeL5c6MjbliqXF42Yn17QnQKMXsEi5/a/RJFVGh7nyemeJefVvX0j/ccqyz8EuMBwYE5ILG0O/Gzy0Ea3JEX9JCffK3g5ADWgLVhsatry3g3o7mixu3CsH8NIUNCMgF9bsXFXjvG8VauQcElDSCkAN88WOTfTWfBH2hoa+MLw5CDthd8Q+TDfUl4RcmuzF+cBBywO4IjRtrTDgpCqEvQTRUN6UYugqLvQAfdMat0J9R6d7mUZaoVbS6gauGRd4Qk/7HCkHIAa0C3ZeicWF9u6eboNzf6dUXe5YPQg7wgb4qjjYs6f4H3ePRZAlXvyvqP8MJQg7wgf54dz7num1Ufx1ub2ltKnYBPxNgABMNg29pRph8AAAAAElFTkSuQmCCiVBORw0KGgoAAAANSUhEUgAAAOIAAAAlCAYAAABf/TXbAAAAGXRFWHRTb2Z0d2FyZQBBZG9iZSBJbWFnZVJlYWR5ccllPAAAAyFpVFh0WE1MOmNvbS5hZG9iZS54bXAAAAAAADw/eHBhY2tldCBiZWdpbj0i77u/IiBpZD0iVzVNME1wQ2VoaUh6cmVTek5UY3prYzlkIj8+IDx4OnhtcG1ldGEgeG1sbnM6eD0iYWRvYmU6bnM6bWV0YS8iIHg6eG1wdGs9IkFkb2JlIFhNUCBDb3JlIDUuNS1jMDE0IDc5LjE1MTQ4MSwgMjAxMy8wMy8xMy0xMjowOToxNSAgICAgICAgIj4gPHJkZjpSREYgeG1sbnM6cmRmPSJodHRwOi8vd3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjIj4gPHJkZjpEZXNjcmlwdGlvbiByZGY6YWJvdXQ9IiIgeG1sbnM6eG1wPSJodHRwOi8vbnMuYWRvYmUuY29tL3hhcC8xLjAvIiB4bWxuczp4bXBNTT0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL21tLyIgeG1sbnM6c3RSZWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZVJlZiMiIHhtcDpDcmVhdG9yVG9vbD0iQWRvYmUgUGhvdG9zaG9wIENDIChXaW5kb3dzKSIgeG1wTU06SW5zdGFuY2VJRD0ieG1wLmlpZDpCRjdEMThBMUUxOTExMUU2ODg3MkJCNUMwNERERjU4NSIgeG1wTU06RG9jdW1lbnRJRD0ieG1wLmRpZDpCRjdEMThBMkUxOTExMUU2ODg3MkJCNUMwNERERjU4NSI+IDx4bXBNTTpEZXJpdmVkRnJvbSBzdFJlZjppbnN0YW5jZUlEPSJ4bXAuaWlkOkJGN0QxODlGRTE5MTExRTY4ODcyQkI1QzA0RERGNTg1IiBzdFJlZjpkb2N1bWVudElEPSJ4bXAuZGlkOkJGN0QxOEEwRTE5MTExRTY4ODcyQkI1QzA0RERGNTg1Ii8+IDwvcmRmOkRlc2NyaXB0aW9uPiA8L3JkZjpSREY+IDwveDp4bXBtZXRhPiA8P3hwYWNrZXQgZW5kPSJyIj8+p4Ta8wAAC5tJREFUeNrsnAl0FdUZxycLEmUH4bAkBGNse6QbLdZKBT1QFIplKdAFCi6tKFq01qq1bQ4VbdG60qrQVipVEVFERBQVsCiVggiiiIBJWRMqS1GRpgFC6P3O+83J52XmZV54L3kJ93/O/7x58+7M3O1b752XMW7cOM/B4QRAH8NHDQ/A/ob706VymW58HE4Q9DDcYTjQsNywVzpVzgmiw4mCswz/ZrgdS/ihE0QHh7pFhuFphqsMWxt2NNzkBNHBoW7R2fAThO8MwxLDj9KpgtlujBxOAJQZDuD4TcPR6VZBJ4gOjQldDL9nuMvwMB7fyXweMcwyPGpYpY4Pce070Amig0MSLJ8kZb7PdxG4NYaVAWGYCGEzYkf5lETOJU4QHRySgysMCwy/hvDJ2uEfQspmYEWf8GJJnNqgOdZVPncatsIK/zuRm6RDsuYcw7PplDB8wfB8w6Z1VKf2xBSd3LyOhK6GFxq2SYO6yNLEpYb7+P57w74hZcUqlhpe74Unb3K82BpkH+aFDbGk8wxnGj5leL/hokTj0HQQxMdpTLy63Ga4xLBDCp7fGq2Ypc71NlxoOMjJ2DE4FQWlFae4gi8a9rTKdaxBwaYK7xn+hGNR3n/yYpnTMKw1XBAwB7sbLse9fdVwK0KrreHphjcYXodb/FPDu73YxoEGJYi+ZoqHWYa3GH6cgmffjlbsos5tMLzHcLWTu2Mwk6RGjjr3uuGdhv9S5540fMvwpHqqp8yZuzguNJwWRykcNJxDTKktobisXzK81rAf7blLCVkhFvhNjv9puBcP4S0+eycqiE2YjJ1DYsdTDPOwSrYAi9bJxzfOplxbq1F5aMkgHFEuYZ41yIL5hlO82B5B/375fJ7ENWE+fgs6pBNttN0Ov05yj5Ycl2CF1wfEFB24XzPrtyacb07/5MZpbzb9nEe/xoMelyzKt1GTqg330WPWTI2Hrnt7zrcLmJQ1jaHH9zaq/1twXibi77zYrhWP+7fmXvn0STb90866p5Tppu6VTPwSN1HwbcNfJXBtd+p+KzHmK4ZX8dswPiUO3caxuK4bOe6JsjqEko8siOd5sV0HpWSeVnif3os3BnO/nYB0HgGxpx68FW25gnJSwZuIHdZzTvb6/dnq9EoGSvzrXZRbbfn1j/DcjqrRWzm/mmvke5HVPun4LdRFrn/Duu99hsM5/ofhdI4HEWP8QJXNRcuXcT/pdL1jvpDz0o5ltFXq9UdLsZxLPcr4fQuDHaStP49L5I/LC4ZzGatWlJnMffR4jKI//LZ2pO6lnC/je6eQMXxD9elvVd1m4n41x2vw+/tqL7Zl7Fy+P0FcJXXchOtWieV8yQoDJtEHPVMgiIdJ3uzku3hVgyNe+zZKd5I6d8CSmwzaI9ijhP49LOKVUZNAmSRKnkLj3owlyFeD1I8JX2F4jeGDaJcZaoD8ig1GMCYwiOL2PY8PfiUDcbnhjaoOh3heAfcX7XOm4VRldZqgse3nDTFciuuwm04boTTtUDplPO36DG05Vbmli5WyKbLuryfMdO79EPHHR8QeF6lB8UjybEZ7rqPs1cpSzKKvbyCe2EA7g9zze0lmPUobslFs7VQdm1jP1/X2PyVF/03Dh1Eec2jLHQFKeTCCPgFhFKsylt9uRKmWU26qsvD6eT9HUR1grjzMeYnDvmr4ZeWRDKW/lqfIRRUh/7FXva74IHFdTahkzvtrjqchHx75A4/xf0wplNc5vom2F6CQa0Q2nSsuS381Ke/1qjfFjlEB+VrV4VdhmldaGaQrOF5DxVYy6DLRnjUsxuIUqTocwfpsUEHwZfjn8QZoGkLoa6FFZFdlov2PSSv+/3/VNb9mIixGWfiuxWvKtbJjV6nHBSif8ZxbQn3HMsG0G+332VLq1Y8AvgDLWqTilylxMpF9qNdYZWneDsnexYPELp9Da8vE+ivW9lu4uuU1jGFfzq9D4XWl/eVxrMleLPEixkAwG4XsK+yv4ElMVmV0Nn1KnGe04PdHIrR/IYr4Ftz8acR5lRH770yverFflMrTEa7JRU72RhXEQUzAVer8PnXcA5fmfXVuOYJ4hiWIeiOtH7hvVxP6AwayGZU8gkbfTFymg//LvJqXDzaq4xIVy+p2tGFCfIJw+vGQF2D1wlCg2q3bV0z/aKEtVmW2oxn9Ou3Ekl6PVfT7dXFA+rwd8a/uXynzLgomUeyhH3KY9PvxGuz2B43hKQn2V1gicDn98x3DiVhLD8VpYz3Wuyrk/lnK5YyCSSjgYXgHP/NiSxtRUIr3MgqlONdSvkGowpPxogpiU0xwRZwylZb2qAgZlMyQDgvKkh5VLtVh6/6VAe6Wl8C9/Wvvxi3JUS5GbZBltduv4+GAZEtmnDqVYS1vxgNoSfm1CNduK7niBViKylpknvPR5L2471HGfU9EATrqJQcShjyOEJ6NRV6N5bWxX3lgyYIYj2/Qh/MTuO5DrO8clP+1EQRxM4ystbYSM7ULKbOPCdNcnfPX85KxnF