Исторический метод познания в современной науке. Столяров Владислав

Читать онлайн.



Скачать книгу

другим удобным Вам способом.

      Примечания

      1

      Противоположную позицию в понимании процесса изменения занимают философы типа А. Бергсона, Александера и других, но мнению которых, изменение не предполагает изменяющегося предмета. «Есть изменения, – заявлял, например, А. Бергсон, – но нет меняющихся вещей: изменчивость, не нуждается в подпоре» (А. Б ергсон. Восприятие изменчивости. СПб, 1913, стр. 28).

      2

      См. Г. А. Подкорытов. Специфика исторического метода и его роль в познании, – Вестник ЛГУ, сер. экономики, философии и права, вып.4., 1966, № 23.

      3

      Р. Декарт. Избранные произведения. М., Госполитиздат, 1950, стр. 294.

      4

      И. Кант. Соч., т. 2. М., «Мысль», 1964, стр. 452.

      5

      См. например, Современные проблемы эволюционной теории Л., «Наука», 1967, стр. 7.

/9j/4AAQSkZJRgABAQEASABIAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAMeAjoDAREAAhEBAxEB/8QAHQAAAwEAAgMBAAAAAAAAAAAAAAECAwYHBAUICf/EAGQQAAIBAwIDBQUEBwQHAgcGFwECEQADIRIxBAVBBgciUWEIEzJxgUKRofAUI1KxwdHhCRUW8RcYJDNictNDgiY2U3WTorM0NThjdJKjsrQlJzc5REZUZGVzg4SUw9JVVnaV5P/EABgBAQEBAQEAAAAAAAAAAAAAAAABAgME/8QAIxEBAQEBAQEBAAIDAQEBAQAAABEBAjEhEkFRIjJhQgNxE//aAAwDAQACEQMRAD8A+1ZgnrPmOvlXoZ0gSADn5T1ohR4onSD5edA2eUgCT0k0CwSFgztjEUDliSC2kZNBnrM/F9w3oJ1BiMA/TagrYAk/LFAfbIAEzBMb0B8UScjY9KBHw4UGBsd5oAjSdUSfPrQTdZZG4xvEUUpLkQdWZmgZOrSRjrG9EIrLmIUrtmgkkCepNBQOk0CA+0siBsKKlnGkQSOu9AMZMsV0kAY3oEBJIGR+75URJEsCoKjzOI+dA20iSOnnNARoXAGRPz/pQBaAJmSJorM3IdWgiBEUBmQGLZwtEKSGk5A6/jQVGoAzncgdaAMHcwN9M4IorPXpbERG29F8CyskgFScEbURIdikkETiT0NENSSYB8zHU+dAP4CIzO5oowehAGaLEMoLatOfSiJJlTpGljjzkUQp0KBAxG+IoLiQxJBO5kUAYIPhzg0ajKAJIOCII8qIJI/eAaIQVWUaTpIGCaBuMAH57STRUMwkwGjedqL4RcEAnzk4qxBqyA7ASZE/uq5qAyNXwyM74qhaixJUZIkis1YlnMKPhUbkbip6pGYOMjETmtIGYaTG2xG5H1qoCArTBCiZY7fSpQrgzhlDHIU1KsRgz0zk+tXCjWQwDD6QM/1qoCSCCYnzJn60E5AxBzjESalXErq1gRvmetSL4GK6ejEmSfztVZIZfV6/mKoCTcDYBkT5mopsANxsevWmaviGKgyTI3JqoGaGQOBHlFEDE2+pOJ+dFjNma4rgT5x9aL4ZBCEkkMcSBt9KIYukAAXcetEcyVpBBBxWAZ2gbbTsaAUasCJjpQDGMDecGgj3mmPPafIUCIzJk75PWgROrIPr5mgoHSAMSdyelBHSJGnagvcHqzbfyoJnUIz50DghhuYzQQzZCgwVwWPSgOsA6TmipAGc+nzohMD4ZEAHMHNA9HhJwRsc0DI0zBG30NBM5mcAdB+NFhayxBEbZ+dBJdB8/lRDJJC+RG/lQSAMZ9N80FSJjffbrQIuoQz0GxH3UUmdws5AAgYyKLUkrJGROQaIQYYAO3XbNEMKIGNzgE0CSCIJgDbTQSxVQD12kYn1opXGwkzPpufpQpeRIkDyMUQMBBIGAfMiTQINgapA2+tA9SrnALeLz+lFT9skQIwY6UWoL5IGwzkmiKhtWTMeZ3oggFgZyTsDQKBBMSCemZosQ3hVgZIJyKL4YIiM6fuohMFG5I+WaIAC0fFA29fSgQaSRAEDVHrRYguYMMB6TtQIzESMCTPSrgeoFcNpHWDUEn9Yvi/9XcVdAWSJO2/59KixOqW6icaQasRInJADeUnIqocT0BK5GetUKP1ZhiZ3IG/Ws7qpuGTBmB+cUxfEwIkKSw+y25FVFOggEEBfI1UIQBJMCetRS2AxAiMip6viWAVcuZgbmqgICYGoM3SdqqJhVBBAB9TifOgDgkSJAAmY/CjUSWFqM4OxjrQo1AjRpAJEmcxRkimifOR60ET4tIzJ6n8KNQZgEfFMZGBQMlixiDGB5zREagpXxllPT+FEL3jftT6xRXOJ+nXVWEKADsPPzFA85AIOZxQRJODOfWSKCSToIOI2HmaBLlQp8smaCohYjNAxJMxMYziKCCSTsAJ8tqCtM3D4Z/dQZ6BjEb7GioLF2bXn0PSiLxpMtpXyA3H8aBYAIgEEYO9Al8Tao26fxoHLEwYwPOgNJ1EmfKTRUsTLY9NqHiWwJn5x50ARqUEeHqV/rREFZ05wKCzAYz6zFAbBZAmNqCSYXO42B3+tFSSzGMKw8ulBMlSWhlNEMkFZn6g7UCJCrH2Tt5UCIAC/sgDfNFBeQcAADpRfCb4gDk9BuRREiNUAEnrH8KIqDc3MjfNAiwnwmEPltQIsI8I0iDIopFgVAMeeaFTAAWMj5URTAGBkaRQIuATCTHWaCCRp0k6REARNGoGmI1DGaJWYM5MhRMjpRDbAgEn8aA1DGrGdX0opHzMgZyP30UBhpzAPQVUqQQcsJ65NWIoyIwD8sRU8E6tLktBA+lTVSQCCD1G4O5oviMkE/gdzWkGnYhpXyG5qoS2wCzbDyjFQNoA+GCfwrLUIYuELM9MbVYlIMI0wSB51UC22LFpJMRJESaozlkAYY656VmrDJLADUZgznrVVLTbIkAH57+VEIsUY9TAgxvVQ2XwwWn8KKjLEx8BOQAf30XwS2vVAEbwKIeHUEt6yRtREnwt6R0zJoqWYTgwu4jaipYfBqQZAnSKJTUBiqnOCdo+VEK2QLbE9Miev86KzLHXJAgxiPxovhy5zI+8UK5sIKwoiRkmsMhiraQDPTVvFFZjeTneiKOxEwekGBQSDqO++N6BsYMbGN6ABCjf0npQBEzvG+qgROrHUHrQJiWOkHY5b0oJPigfD6minGwEnpPWiAkeLxCYORQJJn4p+Y60DGABGaAaSgz91FiXaAJ/CggTjEkbgfvoAkAkEEEbDzJogkric4ic0DPinrPQUCYjTuRnIJoqA7MTC/UGgCYLNgEdf3URAIbIBwZz0oLaDIktAmTQCzBH2euM/KgltSEBRJB3P8aKTPrJOrJGy9KFSigmSM/OgeNc7no1EAJJmGBGI8v50EawGDRCExtRS1BlCmNWxA2/ChqVByNUnaJ3j/KgA3iEiN8CiKJkzIx5UEt4ZGDmcZNFhM4BDZBOBNF8LwmB8Q+LPWjKR5k+LEYoGGDMCJj93nQTEEgmFBkRRYWokSRBmMYz8qKp9tsj7U0xEtchYO/oIqwJo04I204G9Atcp4VmTBnf6VNUiM9Au4AkTRKkNpwRPQnyrSGZWWIJJxmqEZERpEbdJrO6qWOqQTBMQOgopKJWTkEySN6sQgBO2g+RHSqidQYqGJ0nocYooLHT4fEZ2Pz6Vn1S1FogdMKfKrEpsIBUtvsDVRJYkLkyMSaBAhnBGPWN/WjSBMjHi8z/CiVRCsP3TRE6iJAISPtCgRVhsYHnGaLEZAJGc5I3NFIkaQRhugG0+lEJt1nLHeTH40RZYg4IMCQw8qLEQEbaHGDmTRUoCCDnJkUQ9P/MPTFEc01atXRgKwA5JEDEY9aCROBnyx/Cg6T70/a07Jd2/O73JLdji+0PN7D6L1nl5UWrL/sF23YdQoMdc1cxnesx7PuU9oPgu+rmXMuB4bkPMOT3+AsrfvNxTIyFWbSoBEGTBOR0NRc2u3JCsMf0opEwqqDOJmIigksU1HYdJG9FQcMDBNEMnMAxOB/SgmdRgnxDY+VBaiQRkgHaaKnUNpGmOp60QtiSBIjGcUWG7AAGBiN6KlWwBkD9xolCsSdsAddpoEF1HAgGcAb0RwLvo71rHc52Qtc94jlt3mqtxScKLFm6LR1MGIJYg/s+XWibsdR/66fE8Bw9jjua92nO+A5Xe06eNN1gjg/CVZ7Sq0jaGzVZ/X/He/YXtzynvE7N8Fz7kl5r3AcSDp94ul0YEhkdejA4qOmTcr3rMd5MYIBoBWJYjeBOaIFhZyTO00U2URkgZ3ohDBJjE4FFJ8jxeJZj4ulF8IgMTqxGPD0oiWXDkEEAdKIIIkTHUnyoErAAmRjcRtQIkAY+8jaipkhYjV9mBRalsERMjfajJltMAgnFFNQYnE7/50ADkADw/KRQiDGoSNvWgmYaGb/iJjFEPV4iCcjMxQNjhpkAnpRUvdEBR4QMzMTRfCaNKmAufPFE1BDaZOZ2Bxn8iqAqHmGjoMdKiKc6HiPF0AE0WJ1jSNUgavlT1fEPcmDuCfuNWIAxMmfCNww/OKqAAYJOBIkbD5UU2uEGFbSf2iaz6vjOCzSp1oMgrgk1qJQwW4I2BzREkBjAMocn+tAMRbYxPz9KLBc8YGQJ3qqktDQu3kRJ9DURDISPDP371UULwBknzJEUVncZzlgDgHJovg0lhqOQDt5URJYSABK+VEaPIAYnYbTNFZ3QBLErpBiDFFIyFwSBM+hG9EpEjVKghT5jfO9EONJnbyJM0VJuXNiuYJDH8+VF8T1aABA3O8UKlgbRVhJk52oyZUiD4l+eaK1VcD4Pqc0WOYE6lwSBvNYZC6vhIEzQeg7fc/udmOwvaPm9gkX+B5dxHE2mHR1QlT94FD+Hzj7CXZHgeJ5N2g7XcXaTiudtx36Ha4m6up7ShBcuFSfhZ2fLDPh9ausc/2+he89u1t3shxz9izwj9qNVr3B49kFsoHGvUz4+HVEneo3tnx8ucP3xd/nE95t7sEl7kLdpbSs72TZse6gWxcJ97On4T/Cr89YvVjnXeb35due7fsr2P7N3OD4Hje83niEXjaCXLFibpRNCqdLMxIAzAgkzUlXd3Pn8uP8572O9zuH7Q8jud497lfPuz3NLhR7nABC1kiNYDqqw6hpggqwBg9RfUu567C9qPvX593W9kuQcf2Zv8Nb4rmPMPca71gXle37osIB2k6c+tMa62Ou+U97ve/wBm++fsl2N7aXuU2k5pftNcs8FZsuWsuWHxofCZU+op/DN2zXuu8Xvj7wO0nfRxPdv3djl/L7/BoTf4/jlUklUDuxLAhUXUAAFJJou7tmDuN7zO8Tju/jmfYDttzbg+aLy/h7punheHtqPeKbZBV1VSRD9RQzds1x/sN3y98fe7xXP+RdmW5HwnFcu4q493nHF2ltJas6ilu0F0sC5KsdWk4BmImm/Ezet8cr7gO/btHzntH2p7I94HuLXN+RWbvEtxdm0qHTaaLysF8JgEMGESKaudb5rjHZ3vR75u/fiuc807AtynkPZ/gb3urNrjFt67zRKpqdW1OVgn4VGoCafC9deOX9z3f7zXvC7ve2q80sWuA7XdnODv3bhtW9KXItvpfQZAZXQhl22jeKLm11j2N7w++3tZ3Zc47ecJ2z5SnLuVtcF/hOL4S0ly7oRWbT+q05DCAWBJEeVGc3rcr6I7hO8LmPeb3Xcs5/zbhrfDcZee7bc2QVt3dD6feIDsD5TuDUazbjgHtwA/6G+GAgD+9rAj/uXKuJ146s7We1FwPNu5Dhuw3Ccl4+3f4nltjld7jeZsF4W2FVQbixJOVkYEb9IpGf1/jHfncB2e4PsH3JcKvLuccJz1Da4nj7nMOCYtYa6QWKrIBhdIXIBkGQJqN58x8/8AL+/zvs5r3ecd23scRyU9nuCvrw1+83DWVuhyUGLc6mHjXI86vxm7K755H2l7wu3fcR2c5z2Zvcqbtdx9tLl65x1sW7GjW6uVWYBACkYM5xUa+7nx1X227zO+TuK5tyTj+13OuRdoeVcfxBs3OE4K2sgCC6yLaMp0mQ2RIg1fWd3rPXb3tGd5HMu6/uyv895I9hePPF2LNs8VZF1CjyWlZydIqY1uzK6S5737d9HYfjeyh7Q/3BZ4TtAbV3hv0fh7d1mss1sHUFbwGLgwc/dV+M/rrHY/tK97naLuw7R9juC5BxHD2eH5nxFy3xQ4jhxdJAu2lEE7YZqmL1s16/2mPaOvd2HGWez/AGYucPc7Qa/fcVdvILqcLb+ypU4LtvnYfMVcw62ePI79+/PtF2W5n2Z7H9juGs8T2q5zatXTdu2w/u9Z0oqqfDqYgmWwoH3MN3+Mcm7o+W973LuecUO3/M+U8w5S3CzZbgTba4LxYYOhVIAXVmCDiDU2Llv11LzHve73O0fbvt7y3sle5Rc5Z2b4i8zji7NpGSwjMBBYy5hGxvV+M3b8c77h+8vtp3rd0vP+am/wF7tJZ4i5Y5eblgWeHLC0jIrgEYJY5nqPKki5u7jh/eBzzv8Ae7Ls5c7T837SdnL3BcPcti9y/hbaOy62CiVNtSwkgHS05p88Td6x7bvo78u0HLu43sb2y7PX15RxvOLyG8otJeCg2nLKusHGpMHeKmG78rjPa7vI74e589lua897Qcl7T8Dzh00cBZ4dVumVVtJARGBIaAwkTjymm7uPq1jPxqVnJQnbzFR0oPhQZJIj5igANoO3Q77UQatMgt8j1oBn0DwkDEkb0WFrPxMPFGwoviY1AaoXSdo/M1fGUwDMYbYxvVFAZBJOoZrIgv4lJBAmPOaNQiCGlSAfiwNo86QobIJEnEVplBGASZJM/MUDYMFORBHhnyqVYU+LSWgHdelPV8JZULgnPnt6mrEC9AMFTIBqoB5gCRMoOtQIsFBUHSB1yZ8xU1pnrBOoL0gA9DVxKeksMkzMegqoCGMmflIyPOgzNyGIOczqb+VGoYukahqjVtNEqYgwmzEYB39aIprR+ICSAdzmgWqGECCcy2YosZGVBJ32I2mikqm2JxtmelEVpAIgQD4iQTRCFzwnYH1NFiCBqJBZgBMjrRfCuhTkkREb5+lECCFkqdseH8ZoiDKExHmPLfrRYp9SqviMmdulFL3Vw/bP3UK5sCdUQADjesMmSGbcGfvoPW9o+T2u0XIeZ8p4ptNnj+Fu8K7ATAdCs/SZ+lB8Zdwver/q09pe0PYft3wvF8FwzcQt339m0Xa1dVdPvNIy9t1CkMs7D6a9c82fNfTXd/3+9ju8/tDxXKOz3HX+M4vhuF/S3a7w7WUKagsLqgkgkTjrWY6Zubvx0fyd9Pt88zlgWFi7gH/8iWr/AAx/6V7WFniOxnfB3d94F3h7nEcm4R7Nq8yLIV7V83NE9CyMSPPSaYd