Название | Тайны чисел: Математическая одиссея |
---|---|
Автор произведения | Маркус Сотой |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 2011 |
isbn | 978-5-389-12440-0 |
Вопрос на миллион долларов касается природы этих игральных костей: честные они или шулерские? Будут ли они распределять простые числа во вселенной всех чисел справедливо или же будут области с предвзятыми результатами, где простых чисел слишком много либо слишком мало? Эта задача называется гипотезой Римана. Бернхард Риман был студентом Гаусса в немецком городе Гёттингене. Он разработал крайне изощренный математический аппарат, позволяющий понять, каким образом эти кости распределяют простые числа. Используя специальную функцию, называемую дзета-функцией, особые числа, называемые компле́ксными, и проведя анализ, ошеломляющий по своему объему, Риман разработал математику, контролирующую падение этих игральных костей. Он полагал, основываясь на своем анализе, что игральные кости должны быть «честными», но не мог доказать этого. Доказать гипотезу Римана – ваша задача.
Другая интерпретация гипотезы Римана состоит в уподоблении простых чисел молекулам газа в комнате. Вы не можете знать в произвольном случае, где находится каждая из молекул, но физика утверждает, что молекулы будут довольно равномерно распределены по комнате. Невозможно такое, что в одном углу будет повышенная концентрация молекул, а в другом – полный вакуум. У гипотезы Римана схожие следствия применительно к простым числам. Она не может подсказать нам, где находится каждое из простых чисел, но гарантирует, что во вселенной чисел они распределены справедливым, пусть и случайным образом. Для математиков часто хватает такого вида гарантии, чтобы пуститься в навигацию по вселенной чисел с достаточной степенью уверенности. Тем не менее, пока не получен приз в миллион долларов, мы не вполне можем осознавать, как ведут себя простые числа, по мере того как наш счет уводит все глубже и глубже в нескончаемые просторы математического космоса.
Глава 2
Рассказ о неуловимой форме
Великий ученый XVII в. Галилео Галилей однажды написал:
Вселенная не может быть прочитана, пока мы не выучили язык и не ознакомились с буквами, из которых он состоит. Она написана на математическом языке, а буквами являются треугольники, круги и другие геометрические фигуры, без посредства которых понять одно-единственное слово не в человеческих силах. Несведущий в них блуждает в темном лабиринте[2].
В этой главе представлен алфавит причудливых и замечательных форм природы: oт шестиконечной снежинки до спирали ДНК, от поворотной симметрии алмаза до сложной формы листка. Отчего пузыри безупречно сферичны? Как в живом теле появляются чрезвычайно сложные формы вроде человеческого легкого? Какая форма у нашей Вселенной? Математика лежит в основе понимания того, как и почему природа порождает подобное разнообразие форм. Она также наделяет нас возможностью создавать новые формы и способностью рассудить, в каком случае новые формы невозможны.
Не только математики интересуются формами: архитекторы, инженеры, ученые
2
Пробирных дел мастер (Il Saggiatore), 1623 г.