Инженерная графика. О. И. Чердинцева

Читать онлайн.
Название Инженерная графика
Автор произведения О. И. Чердинцева
Жанр Учебная литература
Серия
Издательство Учебная литература
Год выпуска 2006
isbn



Скачать книгу

прямые.

      3. Из точки 0, как из центра, описывают дугу заданного радиуса R между точками сопряжений (рисунок 11в).

      Рисунок 11 – Построение сопряжения двух пересекающихся прямых

      Сопряжение трёх пересекающихся прямых. Положение центра сопрягаемой окружности определяется точкой пересечения биссектрис углов. Радиус окружности (дуги сопряжения) равен длине перпендикуляра, опущенного из центра 0 на любую из заданных прямых (рисунок 12).

      Рисунок 12 – Сопряжение трёх пресекающихся прямых

      Сопряжение двух параллельных прямых. Заданы две параллельные прямые и на одной из них точка сопряжения М (рисунок 13а). Требуется построить сопряжение.

      Построение выполняют следующим образом:

      1) находят центр сопряжения и радиус дуги (рисунок 13б). Для этого из точки М восставляют перпендикуляр до пересечения с прямой в точке N.

      Отрезок прямой MN делят пополам;

      2) из точки О – центра сопряжения радиусом OM = ON описывают дугу от точек сопряжения М и N (рисунок 13 в).

       Упражнение. Выполните чертеж шаблона (рисунок 14), применив правила построения сопряжений. Линии построений не стирайте. Нанесите размеры и обозначения шероховатости поверхностей, имея в виду, что внутренние поверхности шаблона должны иметь шероховатости Ra 0,80, а остальные 12,5. Масштаб 1:1. Заполните основную надпись (материал – сталь 45 по ГОСТ 1050-88).

      Рисунок 13 – Построение сопряжения двух параллельных прямых

      Рисунок 14 – Задание для упражнений

      Сопряжение дуги окружности и прямой линии дугой заданного радиуса.

      Внешнее касание (рисунок 15а). Центр 01 дуги сопряжения находится на пересечении вспомогательной прямой, отстоящей от заданной прямой на величину радиуса R1, и дуги радиуса R + R1 из центра 0. Точки сопряжения K и M находятся соответственно в основании перпендикуляра 01K и на пересечении прямой 001 с основной окружностью.

      Внутреннее касание (рисунок 15б). Центр 01 дуги сопряжения находится на пересечении вспомогательной прямой, отстоящей от заданной прямой на величину радиуса R, и дуги радиуса R − R1 из центра 0. Точки сопряжения – соответственно в основании перпендикуляра 01 K и на пересечении продолжения луча 001 с основной окружностью.

      Рисунок 15 – Сопряжение дуги окружности и прямой линии дугой заданного радиуса: а – внешнее касание, б – внутреннее касание.

      Сопряжение окружности и прямой при условии, что дуга сопряжения проходит через заданную точку А на окружности (рисунок 16).

      Центр дуги сопряжения определяется точкой пересечения луча OA, проведённого через точку сопряжения А и центр O заданной окружности, и биссектрисы угла ABK, образованного касательной AB в точке сопряжения и заданной прямой t. Радиус сопрягающей дуги равен расстоянию O1A; O1K⊥ t, где K – точка сопряжения на прямой t.

      Рисунок 16 – Сопряжение окружности и прямой при заданной точке сопряжения на окружности: а – внешнее касание, б – внутреннее