Название | Методология 2025 |
---|---|
Автор произведения | Анатолий Левенчук |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 0 |
isbn | 9785006486195 |
Главный посыл этого подраздела: материал курса «Методология» общеприложим к самым разным системам. При этом мы признаём, что начиная со следующего раздела мы главным образом будем рассказывать про методологию в её версии для методов работы систем-создателей в графах создания каких-то систем. Но вот первый раздел показывает, что методология вполне приложима как метод мышления о не слишком интеллектуальных «железных» агентах, хотя там термин больше используется не «метод», а «функция». Методология приложима и к методам/функциям работы таких «не совсем пока интеллектуальным» агентов, как нынешние системы AI.
Сегодня (а про завтра ничего сказать пока нельзя) центральное место в функциональной декомпозиции систем AI занимают искусственные нейронные сети. Поглядим на очень грубо составленное дерево/аутлайн системных уровней систем AI:
Стек тут – любой проход по одной вертикали в этом дереве, но помним о сложностях разложения методов в дерево. Есть сложности моделирования разбиения функциональных объектов – роли ведь тоже можно декомпозировать по-разному, трудности разложения в спектр их методов работы тут проявляются в полной мере. Так, обратите внимание, что слои есть и у голов, и у бэкбонов как частей ANN, ибо «слой» из «нейронов» вроде как составная часть ANN, но верхние слои – это «головы» (их может быть и несколько), а нижние слои – бэкбоны. Как мы и говорили, очень трудно представить «чистый стек», но и «чистое дерево» представить тоже трудно, и то же самое будет даже с графами. В следующих разделах мы покажем, как многие такие представления конвертировать в табличные, но содержательно это не убавит проблем. При разузловке/разбиении и синтезе что ролей, что их методов, придётся каждый раз в каждом проекте включать голову – и думать.
На диаграмме представлено функциональное разбиение системы, то есть дерево ролей (подсистемы, функциональные объекты). Но надо понимать, что речь идёт в том числе и о функциях этих ролей, за каждой ролью может быть множество видов методов, которые могла бы выполнять роль (помним, что в актуальной системе метод уже обычно выбран, но вот в момент проектирования системы – ещё нет, обсуждаем множество методов).
В текущем подразделе мы приводим пример разговора про методы работы систем AI: что там делают подсистемы и подсистемы подсистем, обмениваясь данными, это dataflow представление. Центральное место в функциональном разбиении системы AI занимает искусственная нейронная сеть (ANN, artificial neural network), подсистема системы экспертов (несколько нейронных систем объединяются как «эксперты» в смеси экспертов, MoE, mixture of experts)49:
49
https://www.linkedin.com/pulse/mixture-experts-yacine-bouaouni-ehc5c/