Название | Измерять и навязывать. Социальная история искусственного интеллекта |
---|---|
Автор произведения | Маттео Пасквинелли |
Жанр | |
Серия | Individuum. Внесерийное |
Издательство | |
Год выпуска | 2023 |
isbn | 978-5-907696-44-0 |
Автоматизация познания как распознавание паттернов
Перевод трудового процесса сначала в логическую процедуру, а затем в технический артефакт редко протекает просто и безотказно; чаще это путь проб и ошибок. В этом смысле название книги[54] содержит не только политическую, но и техническую аналогию. Оно иронически сигнализирует, что нынешняя парадигма ИИ амбивалентна: она возникла вовсе не из когнитивных теорий, как верят некоторые, а из спорных экспериментов по автоматизации перцептивного труда, то есть распознавания паттернов[55]. Глубокое обучение начиналось как расширение методов распознавания визуальных образов, разработанных в 1950‑е годы, на невизуальные данные – текст, аудио, видео и поведенческие материалы самого разного происхождения. Подъем глубокого обучения начался в 2012 году, когда сверточная нейронная сеть AlexNet выиграла конкурс компьютерного зрения ImageNet. С тех пор термин «ИИ» стал по умолчанию обозначать парадигму искусственных нейронных сетей, которая в 1950‑х годах, напротив, считалась конкурентом ИИ (пример противоречий, характеризующих его «рациональность»)[56]. Стюарт и Хьюберт Дрейфусы осветили эту коллизию в эссе 1988 года «Создание сознания vs моделирование мозга», в котором обрисовали две родословные ИИ – символическую и коннекционистскую. Cудьба этих подходов, основанных на разных логических постулатах, сложилась по-разному[57].
Символический ИИ – это родословная, связанная с Дартмутским семинаром 1956 года, на котором Джон Маккарти предложил небесспорный термин «искусственный интеллект»[58]. На основе символического ИИ были разработаны программы Logic Theorist и General Problem Solver, а также множество экспертных систем и машин логического вывода, оказавшихся тривиальными и склонными к комбинаторному взрыву. Коннекционизм в свою очередь представляет родословную искусственных нейронных сетей, созданных Фрэнком Розенблаттом в 1957 году. Изобретенный им «перцептрон» в 1980‑х годах развился в сверточные нейронные сети и в конечном итоге породил архитектуру глубокого обучения, которая доминирует в этой области с 2010‑х.
Обе родословные развивают разные виды логики и эпистемологии. Символический подход утверждает, что разумность – это представление мира (знание-что), которое можно формализовать в виде суждений и, следовательно, механизировать согласно дедуктивной логике. Согласно коннекционистскому подходу, разумность представляет собой опыт мира (знание-как),
53
См. главу 5. О новом подходе к исследованию рабочих см.: Woodcock J. Towards a Digital Workerism: Workers’ Inquiry, Methods, and Technologies // Nanoethics 15 (2021): 87–98.
54
Имеется в виду название книги в оригинале (The Eye of the Master). Напомню, что «хозяйский глаз» – выражение Фридриха Энгельса. –
55
Термины «хозяин» [master] и «паттерн» имеют общую политическую этимологию. Английский термин «паттерн» происходит от французского patron и латинского patronus. Последние два слова имеют общий корень с английскими словами «отеческий» [paternal] и «отец» [father] и восходят к латинскому pater. Латинское patronus означает также «защитник», в том числе защитник слуг. Французское patron – это «лидер», «начальник» и «глава сообщества», что в патриархальном контексте подразумевает «образец для подражания».
56
AlexNet была сверточной нейронной сетью нового поколения, названной в честь Алекса Крижевского, ученика Джеффри Хинтона. Принято считать, что следующая статья знаменует собой начало эры глубокого обучения: Krizhevsky A., Sutskever I., and Hinton G. Imagenet Classification with Deep Convolutional Neural Networks // Advances in Neural Information Processing Systems 25 (2012): 1097–105. См. также: Cardon D., Cointet J.-Ph., and Mazières A. Neurons Spike Back: The Invention of Inductive Machines and the Artificial Intelligence Controversy // Elizabeth Libbrecht (trans.). Réseaux 211, no. 5 (2018): 173–220.
57
Дрейфус Х.Л., Дрейфус С.И. Создание сознания vs. моделирование мозга: искусственный интеллект вернулся на точку ветвления // Аналитическая философия: становление и развитие. М.: Дом интеллектуальной книги, Прогресс-Традиция, 1998. С. 401–432.
58
McCarthy J. et al. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence. 31 August 1955, AI Magazine 27, no. 4 (2006).