Название | Искусственный интеллект. Машинное обучение |
---|---|
Автор произведения | Джейд Картер |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2024 |
isbn |
Предположим, у нас есть данные о времени выполнения операций в компьютерной сети, и мы хотим выявить аномальные операции, которые могут указывать на наличие сбоев или атак в системе.
Воспользуемся библиотекой scikit-learn для реализации Isolation Forest:
```python
from sklearn.ensemble import IsolationForest
import numpy as np
# Пример данных о времени выполнения операций (в миллисекундах)
data = np.array([100, 120, 105, 110, 115, 130, 150, 200, 300, 400, 1000])
# Преобразуем данные в столбец (необходимо для scikit-learn)
data = data.reshape(-1, 1)
# Создаем модель Isolation Forest
model = IsolationForest(contamination=0.1) # contamination – ожидаемая доля аномалий в данных
# Обучаем модель
model.fit(data)
# Выявляем аномалии
anomalies = model.predict(data)
# Выводим индексы аномальных операций
print("Индексы аномальных операций:", np.where(anomalies == -1)[0])
```
В данном примере мы создаем модель Isolation Forest с ожидаемой долей аномалий в данных 0.1 (10%), обучаем ее на времени выполнения операций, а затем выявляем аномалии. В результате мы получаем индексы аномальных операций, которые превышают пороговое значение, установленное моделью.
Этот пример демонстрирует, как можно использовать Isolation Forest для выявления аномалий в данных времени выполнения операций. Другие методы, такие как One-Class SVM, могут быть использованы аналогичным образом для решения подобных задач.
Для другого примера давайте рассмотрим ситуацию с медицинскими данными. Предположим, у нас есть набор данных о пульсе пациентов, и мы хотим выявить аномальные показатели пульса, которые могут указывать на серьезные медицинские проблемы.
Для этого мы можем использовать алгоритм One-Class SVM для определения аномальных значений пульса.
Рассмотрим пример кода на Python, который реализует это:
```python
from sklearn.svm import OneClassSVM
import numpy as np
# Пример данных о пульсе пациентов (удалены аномальные значения)
pulse_data = np.array([65, 68, 70, 72, 75, 78, 80, 82, 85, 88, 90, 92, 95])
# Добавим аномальные значения
anomalies = np.array([40, 100])
pulse_data_with_anomalies = np.concatenate((pulse_data, anomalies))
# Преобразуем данные в столбец (необходимо для scikit-learn)
pulse_data_with_anomalies = pulse_data_with_anomalies.reshape(-1, 1)
# Создаем модель One-Class SVM
model = OneClassSVM(nu=0.05) # nu – ожидаемая доля аномалий в данных
# Обучаем модель
model.fit(pulse_data_with_anomalies)
# Предсказываем аномалии
anomaly_predictions = model.predict(pulse_data_with_anomalies)
# Выводим индексы аномальных значений
anomaly_indices = np.where(anomaly_predictions == -1)[0]
print("Индексы аномальных значений пульса:", anomaly_indices)
```
В этом примере мы сначала создаем набор данных о пульсе пациентов, затем добавляем в него несколько аномальных значений (40 и 100, что предполагает необычно низкий и высокий пульс соответственно). Затем мы используем One-Class SVM для обнаружения аномалий в данных о пульсе. После обучения модели мы предсказываем аномалии и выводим индексы аномальных значений.
Этот пример демонстрирует, как можно использовать