Название | Нейросети практика |
---|---|
Автор произведения | Джейд Картер |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2023 |
isbn |
В процессе обучения нейронной сети, целью является минимизация функции потерь, которая измеряет расхождение между предсказанными значениями сети и фактическими значениями. Чтобы достичь этой минимизации, используются различные алгоритмы оптимизации, которые обновляют веса и смещения сети в соответствии с градиентом функции потерь.
Один из наиболее распространенных алгоритмов оптимизации называется стохастическим градиентным спуском (Stochastic Gradient Descent, SGD). Он основывается на итеративном обновлении параметров сети в направлении, противоположном градиенту функции потерь. В каждой итерации SGD случайным образом выбирает небольшую подвыборку данных (так называемый мини-батч) и вычисляет градиент функции потерь относительно параметров сети. Затем происходит обновление параметров в направлении, обратном градиенту, с определенным шагом, называемым скоростью обучения (learning rate).
Другие популярные алгоритмы оптимизации включают Adam (Adaptive Moment Estimation) и RMSprop (Root Mean Square Propagation). Adam комбинирует идеи из разных алгоритмов оптимизации, включая SGD с импульсом и адаптивную скорость обучения. Он адаптивно регулирует скорость обучения для каждого параметра сети, учитывая предыдущие градиенты и их моменты. RMSprop также адаптивно настраивает скорость обучения, но использует скользящее среднее квадратов градиентов для нормализации шага обновления.
Кроме того, существуют и другие алгоритмы оптимизации, которые могут быть эффективны в различных ситуациях или задачах обучения нейронных сетей. Некоторые из них включают Adagrad, Adadelta, Adamax, Nadam и другие. Каждый из этих алгоритмов имеет свои особенности и преимущества в зависимости от типа задачи и данных.
Выбор оптимального алгоритма оптимизации и настройка его параметров может существенно влиять на производительность и скорость обучения нейронной сети. Важно экспериментировать с различными алгоритмами и параметрами, чтобы найти оптимальное сочетание для конкретной задачи и сети.
Функции потерь:
Функции потерь (или функции ошибки) играют важную роль в обучении нейронных сетей, так как они позволяют измерить расхождение между предсказанными значениями сети и фактическими значениями, которые являются целевыми для задачи обучения. Функции потерь определяют числовую оценку ошибки и указывают направление для корректировки весов и смещений сети в процессе оптимизации.
Выбор подходящей функции потерь зависит от типа задачи, которую решает нейронная сеть. Некоторые распространенные функции потерь включают:
1. Среднеквадратичная ошибка (Mean Squared Error, MSE): Эта функция потерь широко используется в задачах регрессии, где требуется предсказание непрерывных значений. Она вычисляет среднюю квадратичную разницу между предсказанными и фактическими значениями.
2. Кросс-энтропийная функция потерь (Cross-Entropy