Название | Нейросети практика |
---|---|
Автор произведения | Джейд Картер |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2023 |
isbn |
Однако, сигмоидная функция имеет некоторые недостатки, которые ограничивают ее применение в некоторых случаях. В частности, она страдает от проблемы затухающего градиента (vanishing gradient problem). При глубоких нейронных сетях, где градиенты передаются через множество слоев, градиенты, умноженные на производную сигмоидной функции, становятся очень маленькими. Это может привести к затуханию градиента и замедлению скорости обучения сети.
Из-за этой проблемы сигмоидная функция постепенно вышла из практического применения в глубоком обучении и была заменена на другие функции активации, такие как ReLU (Rectified Linear Unit) и его вариации. ReLU функция позволяет эффективнее обучать глубокие сети и предотвращает затухание градиента.
Тем не менее, сигмоидная функция все еще может использоваться в некоторых случаях, особенно в задачах, где требуется ограничение значений в интервале (0, 1) или когда требуется моделирование вероятностей. Также она может быть полезна в градиентных методах оптимизации, таких как оптимизация с использованием градиента, когда требуется сжатие значений в интервале (0, 1).
– Гиперболический тангенс (Tanh):
Гиперболический тангенс (Tanh) – это функция активации, которая также ограничивает выходное значение нейрона в определенном диапазоне. В случае гиперболического тангенса, диапазон составляет от -1 до 1. Математически гиперболический тангенс определяется следующим образом:
tanh(x) = (exp(x) – exp(-x)) / (exp(x) + exp(-x))
где x – входное значение нейрона, exp – функция экспоненты.
По своей форме, гиперболический тангенс очень похож на сигмоидную функцию, но смещен на ноль и масштабирован. Он имеет S-образную форму и обладает свойствами сжатия значений в диапазоне (-1, 1).
Гиперболический тангенс также страдает от проблемы затухающего градиента, аналогично сигмоидной функции. При глубоких нейронных сетях, градиенты, умноженные на производную гиперболического тангенса, становятся маленькими, что может привести к затуханию градиента.
Однако, гиперболический тангенс может быть полезным в некоторых случаях. Во-первых, он имеет симметричный диапазон значений, от -1 до 1, что может быть полезно в определенных задачах. Например, в задачах, где требуется симметричное ограничение выходных значений нейронов, таких как центрирование данных.
Кроме того, гиперболический тангенс может быть полезным при работе с последовательностями или временными данными, где требуется моделирование симметричного изменения значений с учетом положительных и отрицательных направлений.
В современных глубоких нейронных сетях, гиперболический тангенс не так широко используется, как, например, функция активации ReLU и ее вариации. Однако, в некоторых специфических