Название | Симметричные числа и сильная гипотеза Гольдбаха-Эйлера |
---|---|
Автор произведения | Николай Иванович Конон |
Жанр | |
Серия | |
Издательство | |
Год выпуска | 2023 |
isbn |
Докажем следующую небольшую лемму.
Лемма 2. Любое четное число может быть однозначно отнесено к натуральному числу вдвое меньшему данного четного числа.
Доказательство. Действительно, так как четное число n выражается формулой ch=2n, то разделив его на двойку, получим утверждаемое натуральное число, что и доказывает высказанное утверждение.
Рассмотренные выше соображения позволяют сформулировать следующее важное утверждение или теорему.
Теорема 1. Любое число n представимо суммой чисел любой симметричной пары, отнесенной к числу 2n, вдвое меньшему данному числу, т.е. равной удвоенному значению числа n, находящемуся на середине отрезка числовой оси [0;2n].
Доказательство. Действительно, согласно выражению (2.3) на числовой оси [0;2n] можно составить n симметричных пар (ai,bi) таких, что ai + bi = 2n. Таким образом, утверждение теоремы 1 доказано.
Из сформулированной выше теоремы следует две леммы, доказательства которых очевидны.
Лемма 3.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.