Математическое моделирование исторической динамики. Олег Евгеньевич Царьков

Читать онлайн.
Название Математическое моделирование исторической динамики
Автор произведения Олег Евгеньевич Царьков
Жанр
Серия
Издательство
Год выпуска 2023
isbn



Скачать книгу

области.

      В процессе своего развития каждая система проходит две стадии: эволюционную (иначе называемую адаптационной) и революционную (скачок, катастрофа). В эволюционный период происходит медленное накопление количественных и качественных изменений параметров системы и ее отдельных элементов. В результате этого происходит скачкообразный переход количества в качества, после которого из элементов старой системы формируется новая. Она, определяется неким аттрактором, образовавшимся в процессе адаптации уцелевших элементов к изменившимся условиям внешней среды.

        В точке бифуркации происходит скачкообразное изменение системы, вызваное колебаниям. Она представляет собой переломный, критический момент в развитии системы во времени и пространстве, когда происходят качественные, скачкообразные, внезапные изменения в развитии системы. При бифуркации осуществляется выбор траектории дальнейшего движения, т.е. происходит катастрофа. Множества, характеризующие значения параметров системы на альтернативных траекториях, определяются как аттракторы. В их качестве аттрактора могут выступать состояние равновесия, периодическая траектория и странный аттрактор (хаос). Когда в точке бифуркации происходит катастрофа, систему (или её часть) притягивает один из аттракторов, и она в точке бифуркации может стать хаотической и разрушиться, перейти в состояние равновесия или выбрать путь формирования новой упорядоченности, т.е. выступает в новом качестве.

      Как правило, неустойчивость возникает в виде нестандартного воздействия на систему или появлении нового компонента. В точке бифуркации неустойчивость усиливается благодаря колебаниям системы. Подавляемые в устойчивом состоянии, они в результате нелинейных процессов переводят параметры системы за критические значения и инициируют скачкообразный переход в новое устойчивое состояние с меньшей энтропией. После этого цикл "плавное развитие – скачок", "эволюция – революция", "устойчивость – неустойчивость" повторяется.

      Противоречие между консервативными и активными частями системы постепенно нарастает и приводит к тому, что даже малые флуктуации приводят к катастрофе. В революционной фазе поведение системы и её отдельных элементов приобретает труднопредсказуемый характер. Такое неадекватное поведение вызывается не только внутренними флуктуациями, силу и направленность которых можно прогнозировать на основании истории развития и современного состояния, но и внешними, имеющими случайный характер. После формирования новой структуры „обновлённая” система снова вступает на путь плавных изменений, и цикл повторяется.

      Таким образом, триггером развития системы являются качественные изменения, вызванные квазидиалектическими противоречиями. Гегель называл импульсом и двигателем процесса развития считал ислючительно внутренние противоречия системы, но игнорировал внешние. Его выводы справедливы для закрытой системы. В случае открытой системы их становится больше, поскольку система адаптируется к среде и вследствие этого