Название | Математические модели в естественнонаучном образовании. Том II |
---|---|
Автор произведения | Денис Владимирович Соломатин |
Жанр | Учебная литература |
Серия | |
Издательство | Учебная литература |
Год выпуска | 2022 |
isbn |
Рисунок 5.15. 4-таксонное метрическое дерево с дальними соседями,
.Предположим, что метрическое дерево на рисунке 5.15 описывает истинную филогению таксонов. Тогда идеальные данные дадут нам расстояния в таблице 5.10.
Таблица 5.10. Расстояния между таксонами на рисунке 5.15
3х x+y 2х + y
2x+y x+y
x+2y
Но, если
(на самом деле, и , которые не являются соседями. Таким образом, UPGMA или FM-алгоритм, выбирая ближайшие таксоны, выбирает для присоединения не соседей. Самый первый шаг соединения будет неправильным, и как только присоединимся к не соседям, то не восстановим истинное дерево. Суть проблемы заключается в том, что если молекулярные часы не работают, как в случае с деревом на рисунке 5.15, то ближайшие таксоны по расстоянию не обязательно должны быть соседями по дереву.Вопросы для самопроверки:
– Если
намного меньше , то откуда уверенность в том, что молекулярные часы не работают в эволюции, описанной деревом на рисунке 5.15?Таким образом, выбор ближайших таксонов для присоединения ввел заблуждение; нужен более сложный критерий выбора таксонов для присоединения. Чтобы изобрести его, представьте себе дерево, в котором таксоны
и являются соседями, соединенными в вершине , а каким-то образом соединена с оставшимися таксонами , как показано на рисунке 5.16.Если данные точно соответствуют этому метрическому дереву, то для каждого
, дерево будет включать поддерево, подобное изображенному на рисунке 5.17.Рисунок 5.17. Поддерево дерева на рисунке 5.16.
Но