Название | Власть роботов. Как подготовиться к неизбежному |
---|---|
Автор произведения | Мартин Форд |
Жанр | Техническая литература |
Серия | |
Издательство | Техническая литература |
Год выпуска | 2021 |
isbn | 9785001397793 |
Команда из Торонтского университета использовала графические процессоры производства NVIDIA, компании, основанной в 1993 году и занимающейся исключительно разработкой и выпуском ультрасовременных графических чипов. После состязания ImageNet 2012 года и последовавшего широкого признания мощного синергетического эффекта соединения глубокого обучения и графических процессоров NVIDIA резко изменила траекторию своего движения, превратившись в одну из самых значимых технологических компаний, связанных с развитием искусственного интеллекта. Свидетельством того, что революция в области глубокого обучения свершилась, стала рыночная стоимость компании: с января 2012 года по январь 2020-го акции NVIDIA выросли более чем на 1500 %.
После того как проекты, связанные с глубоким обучением, перешли на графические процессоры, исследователи ИИ из ведущих технологических компаний начали разрабатывать программные средства, способные дать толчок созданию глубоких нейронных сетей. Google, Facebook и Baidu выпустили нацеленные на глубокое обучение программы с открытым исходным кодом, которые можно было бесплатно скачивать, использовать и обновлять. Самой широко используемой платформой является TensorFlow компании Google, выпущенная в 2015 году. TensorFlow – это комплексная программная платформа для глубокого обучения, предлагающая как исследователям, так и инженерам, разрабатывающим практические приложения, оптимизированный код для реализации глубоких нейронных сетей, а также разнообразные инструменты, увеличивающие эффективность разработок. Такие пакеты, как TensorFlow и PyTorch, конкурирующая платформа от Facebook, освобождают исследователей от необходимости писать и тестировать программный код, разбираясь в тонкостях, и позволяют сосредоточиться на задачах более высокого уровня при построении систем.
В процессе революции в области глубокого обучения NVIDIA и некоторые ее конкуренты перешли к разработке еще более мощных микропроцессоров, специально оптимизированных для задач глубокого обучения. Intel, IBM, Apple и Tesla сегодня создают компьютерные чипы, которые ускоряют вычисления, необходимые глубоким нейронным сетям. Чипы для глубокого обучения находят применение в бесчисленных устройствах, включая смартфоны, беспилотные автомобили и роботов, а также высокопроизводительные серверы. В результате появилась постоянно расширяющаяся сеть устройств, разработанных для поддержки искусственного интеллекта. В 2016 году Google объявила о создании собственного чипа, который назвала тензорным процессором. Эти процессоры разработаны специально