Continuous Emission Monitoring. James A. Jahnke

Читать онлайн.
Название Continuous Emission Monitoring
Автор произведения James A. Jahnke
Жанр Биология
Серия
Издательство Биология
Год выпуска 0
isbn 9781119434023



Скачать книгу

gas concentration

      Because the pollutant concentration is divided by percent CO2, any constant change in the dilution ratio cancels out in the concentration ratio. When reporting emission mass rates in pounds/hour, the pollutant mass rate equation is not expressed in a form where flue gas density effects on the dilution ratio cancel, and changes in the flue gas density must be taken into account.

       Other Correction Methods.

      In conjunction with Pennsylvania Power and Light (PPL), the Lehigh University Energy Research Center developed a dilution ratio calculation system called “DRCalc” (Batug et al. 2004; Romero et al. 1999, 2002, 2005). After the dilution ratio is set initially, this system provides corrections for changes in the dilution air supply pressure, dilution air supply temperature, stack pressure and temperature, the sampled gas molecular weight, and the calibration gas molecular weight. Signals from temperature, pressure, and sensors, in addition to flue gas composition data, are sent to the DRCalc unit, where proprietary software is used to continually recalculate the dilution ratio. This system has been patented (Batug et al. 2004) and was successfully applied at PPL facilities (Sale 2000a, b). It also incorporates an algorithm for changes in the dilution probe flue gas temperature, f(T).

      The Electric Power Research Institute developed an algorithm for in‐stack and external dilution system corrections in their “CEMS Analyzer Bias and Linearity Effects (CABLE) study” (Berry 2000). The study was conducted to improve the accuracy of CEM systems used in the acid rain program and provided recommendations for the implementation of a correction algorithm based on Equation 3‐9. In this algorithm, the temperature dependence, f(T), was expressed empirically as fleft-parenthesis upper T right-parenthesis equals RootIndex x StartRoot upper T EndRoot slash RootIndex x StartRoot upper T Subscript o Baseline EndRoot when the study data were found not to follow the theoretical relation f left-parenthesis upper T right-parenthesis equals StartRoot upper T EndRoot slash StartRoot upper T EndRoot Subscript o. Here, x, is determined for each individual dilution system. Step‐by‐step procedures and a logic diagram for implementation of the dilution ratio correction routine can be found in an EPRI report of the study (Berry 1999).

      Dilution Extractive Systems: Wet or Dry Measurement?

      A question that frequently arises when considering the use of a dilution system is whether the emission values are given on a wet basis or a dry basis. Dilution systems that do not dry the diluted sample gas give concentration values (ppm) on a wet basis. If there is no moisture removal, there will still be moisture in the diluted sample. When the diluted concentration (measured with ambient air level analyzers) is scaled back up by multiplying it by the dilution ratio, the moisture content is scaled back up also. The concentration of the pollutant gas in the original wet sample is obtained.

Schematic illustration of example of a wet flue gas being diluted with dry air.

      Consider again from Figure 3‐27 that the diluted SO2 concentration is measured to be 3 ppm. This means that for every 100 ml of gas analyzed, the volume of SO2 equals 3 × 10−6 × 100 = 3 × 10−4 ml. However, because no SO2 is in the dry air used for dilution, this must be the volume of SO2 gas contained in the 1 ml of flue gas drawn into the dilution system. A volume of 3 × 10−4 ml in 1 ml is equivalent to a flue gas concentration of 3 × 10−4 × 106 = 300 ppm. Because, in this example, the 1 ml of flue gas sample also contains 0.1 ml of water vapor, the 300 ppm value is actually a wet‐basis value.

      where

       cd = dry‐basis concentration value (ppm or percent)

       cw = wet‐basis concentration value (ppm or percent)

       Bws = the moisture fraction of the flue gas

      A value for Bws can be obtained by either installing some type of moisture monitor, using a value obtained by manual stack testing, or by estimating a value based on process parameters. Using a moisture analyzer is the most straightforward approach; however, this adds another analyzer to the CEM system. A common technique is to measure oxygen on both a wet and a dry basis and using the results to compute Bws. Also, various calculation approaches have been proposed (Aldina 1985; McGowan 1976) that involve the manipulation of combustion source F factors. But frequently, a moisture value obtained from manual stack test measurements is set as a constant factor to make the appropriate corrections. This approach assumes that variation in the value will be small under normal source operating conditions.