Social Network Analysis. Группа авторов

Читать онлайн.
Название Social Network Analysis
Автор произведения Группа авторов
Жанр Техническая литература
Серия
Издательство Техническая литература
Год выпуска 0
isbn 9781119836735



Скачать книгу

2.16 Visualization of centrality measures on Facebook users.

      One of the innovative and fancy real-time products out of network analysis is nevaal maps, which is created by nevaal AG, a German company focused mainly on network analysis for business.

       Company Vision:

      The motive of the company is to “create a front-line solution to visualize information from our social circles.”

      2.8.1 Nevaal Maps

      It is the SaaS application used in business network analytics. It connects the network (group of people) in the business network together to track them, getting in touch and to make better decision. The capability of it to handle the complex data makes it easier for any start-up to keep their organization in a structured manner.

      The three important features about nevaal maps, which makes it more efficient, are as follows: scalable, secure, and customizable. The central mechanism can be adjusted according to individual customer need.

       Usage

      Visualizing the complex network data helps in

       – Screening process and investment decisions.

       – Enabling the internal/external process of data.

       – Providing interactive and insightful view of the business data.

       Significancy

      The product is not only focusing on visualizing the network connection but also aids in manifesting communication processes, which is outcome focused.

Schematic illustration of visualization of graph database used in business.

      Figure 2.17 Visualization of graph database used in business.

      Social network analysis helps us in every domain, such as fake ID detection, terrorist activities, marketing, social media, and so on.

      1. Mona, E., Hari, R.M., Somya, V., Sivakumari, M.S., Alumni Social Networking Site. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., 7, 467–472, 2021.

      2. Otte, E. and Rousseau, R., Social network analysis: a powerful strategy, also for the information sciences. J. Inf. Sci., 28, 441–453, 2002.

      3. Scott, J., Social Network Analysis. Sociology, 22, 109–127, 1988.

      4. McGloin, J. and Kirk, D., An Overview of Social Network Analysis. J. Crim. Justice Educ., 21, 169–181, 2010.

      5. https://www.microsoft.com/en-us/research/project/nodexl-networkoverview-discovery-and-exploration-in-excel/

      6. Burcher, M., Social Network Analysis and the Characteristics of Criminal Networks, Australia, 2020.

      7. Palus, S. and Kazienko, P., Social Network Analysis in Corporate Management, in: MISSI, 2010.

      8. Wasserman, S. and Faust, K., Social Network Analysis: Methods and Applications, 1994.

      9. Robins, G., A tutorial on methods for the modeling and analysis of social network data. J. Math. Psychol., 57, 261–274, 2013.

      10. Gunawan, T.S., Abdullah, N.A., Kartiwi, M., Ihsanto, E., Social Network Analysis using Python Data Mining. 2020 8th International Conference on Cyber and IT Service Management (CITSM), pp. 1–6, 2020.

      11. Haythornthwaite, C., Social network analysis: An approach and technique for the study of information exchange☆. Libr. Inf. Sci. Res., 18, 323–342, 1996.

      12. Goldenberg, D., Social Network Analysis: From Graph Theory to Applications with Python, 2021, ArXiv, abs/2102.10014.

      13. Hagberg, A., Schult, D., Swart, P., Exploring Network Structure, Dynamics, and Function using NetworkX, 2008.

      14. Staudt, C., Sazonovs, A., Meyerhenke, H., NetworKit: A tool suite for large-scale complex network analysis. Netw. Sci., 4, 508–530, 2016.

      15. Aslak, U. and Maier, B., Netwulf: Interactive visualization of networks in Python. J. Open Source Software, 4, 1425, 2019.

      16. Brandes, U., A faster algorithm for betweenness centrality. J. Math. Sociol., 25, 163–177, 2001.

      17. Bader, D.A., Kintali, S., Madduri, K., Mihail, M., Approximating Betweenness Centrality, in: WAW, 2007.

      19. López-Acosta, A., García-Hernández, A., Vázquez-Reyes, S., Mauricio-González, A., A Metadata Application Profile to Structure a Scientific Database for Social Network Analysis (SNA). 2020 8th International Conference in Software Engineering Research and Innovation (CONISOFT), pp. 208–215, 2020.

      20. Romero-Moreno, L., Methodology with Python Technology and Social Network Analysis Tools to Analyze the Work of Students Collaborating in Facebook Groups. 2019 14th Iberian Conference on Information Systems and Technologies (CISTI), pp. 1–6, 2019.

      21. Krishna, R.P.M., Mohan, A., Srinivasa, K., Practical Social Network Analysis with Python, in: Computer Communications and Networks, 2018.

      22. Liu, X., Sun, T., Bu, F., Qin, H., The Analysis on the Role of Social Network in the Field of Anti-Terrorism Take the “East Turkistan” Organization as an Example. 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE), pp. 2282–2285, 2020.

      23. Siddalingappa, K., Debabrata, S., Mohammad, G.G., Shivamurthaiah, M., A Hybridization Approach based Semantic Approach to the Software Engineering. Test Eng. Manage., 83, March–April, 5441–5447, 2020.

      *Corresponding author: [email protected]

      Конец ознакомительного фрагмента.

      Текст предоставлен ООО «ЛитРес».

      Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

      Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

/9j/4AAQSkZJRgABAQEBLAEsAAD/7S1EUGhvdG9zaG9wIDMuMAA4QklNBAQAAAAAAA8cAVoAAxsl RxwCAAACAAAAOEJJTQQlAAAAAAAQzc/6fajHvgkFcHaurwXDTjhCSU0EOgAAAAAA9wAAABAAAAAB AAA