Principles of Superconducting Quantum Computers. Daniel D. Stancil

Читать онлайн.
Название Principles of Superconducting Quantum Computers
Автор произведения Daniel D. Stancil
Жанр Программы
Серия
Издательство Программы
Год выпуска 0
isbn 9781119750741



Скачать книгу

occurring.

      Figure 1.6 Result of executing the circuit 1024 times on a quantum simulator, compared with executing the circuit 1024 times on a real IBM quantum computer.

      The simulator gives the result expected from an error-free quantum processor. In contrast, the quantum processors available today are noisy and contain errors. As an illustration, Figure 1.6 also shows the result of executing 1024 shots on a real IBM Quantum processor. Although the states |00⟩ and |11⟩ do occur most frequently, the error states |01⟩ and |10⟩ occasionally occur as well. Fortunately there are techniques to reduce and partially mitigate such noise (Chapter 9), and these techniques represent an active area of research.

      1.7 No Cloning, Revisited

      With a better understanding of quantum states and operations, we are now ready to construct a proof of the no-cloning theorem. The proof relies on the fact that unitary operators are linear; when applied to a sum of states, the operator operates independently on each component:

      upper U left-parenthesis Math bar pipe bar symblom psi mathematical right-angle plus Math bar pipe bar symblom phi mathematical right-angle right-parenthesis equals upper U Math bar pipe bar symblom psi mathematical right-angle plus upper U Math bar pipe bar symblom phi mathematical right-angle period (1.56)

      Figure 1.7 Hypothetical cloning operator, that creates an exact and independent copy of unknown quantum state |α⟩. The text will show that such an operator cannot be implemented.

      Further suppose that we have two states:

      StartLayout 1st Row 1st Column Math bar pipe bar symblom alpha mathematical right-angle 2nd Column equals a 0 Math bar pipe bar symblom 0 mathematical right-angle plus a 1 Math bar pipe bar symblom 1 mathematical right-angle EndLayout (1.57)

      StartLayout 1st Row 1st Column Math bar pipe bar symblom beta mathematical right-angle 2nd Column equals b 0 Math bar pipe bar symblom 0 mathematical right-angle plus b 1 Math bar pipe bar symblom 1 mathematical right-angle period EndLayout (1.58)

      By the definition of cloning:

      StartLayout 1st Row 1st Column UC Subscript clone Baseline Math bar pipe bar symblom alpha mathematical right-angle Math bar pipe bar symblom 0 mathematical right-angle 2nd Column equals Math bar pipe bar symblom alpha mathematical right-angle Math bar pipe bar symblom alpha mathematical right-angle equals Math bar pipe bar symblom alpha alpha mathematical right-angle comma 2nd Row 1st Column UC Subscript clone Baseline Math bar pipe bar symblom beta mathematical right-angle Math bar pipe bar symblom 0 mathematical right-angle 2nd Column equals Math bar pipe bar symblom beta mathematical right-angle Math bar pipe bar symblom beta mathematical right-angle equals Math bar pipe bar symblom beta beta mathematical right-angle period EndLayout (1.59)

      Now consider a new state |δ⟩=(|α⟩+|β⟩)/2. By the definition of cloning:

      However, by the linearity of unitary operators:

      Since Eqs. (1.60) and (1.61) cannot both be true, there is no unitary Uclone that can perform the cloning operation for all states.

      We stated earlier that we can clone a (computational) basis state. This can be done with the CNOT gate, with the first qubit as the control. (With our bottom-to-top ordering, this corresponds to the UCN′ operator from (1.52).) Suppose state |ψ⟩ is either |0⟩ or |1⟩, but we don’t know which.

      upper U prime Subscript normal upper C normal upper N Baseline Math bar pipe bar symblom psi mathematical right-angle Math bar pipe bar symblom 0 mathematical right-angle equals Start 2 By 2 Matrix 1st Row 1st Column Blank 2nd Column upper U prime Subscript normal upper C normal upper N Baseline Math bar pipe bar symblom 00 mathematical right-angle equals Math bar pipe bar symblom 00 mathematical right-angle comma if Math bar pipe bar symblom psi mathematical right-angle equals Math bar pipe bar symblom 0 mathematical right-angle 2nd Row 1st Column Blank 2nd Column upper U prime Subscript normal upper C normal upper N Baseline Math bar pipe bar symblom 10 mathematical right-angle equals Math bar pipe bar symblom 11 mathematical right-angle comma if Math bar pipe bar symblom psi mathematical right-angle equals Math bar pipe bar symblom 1 mathematical right-angle EndMatrix equals Math bar pipe bar symblom psi psi mathematical right-angle period (1.62)

      If we apply the circuit from Figure 1.5 to an arbitrary state |ψ⟩ = α|0⟩ + β|1⟩, we get a result that looks sort of like cloning, but not quite:

      upper U Subscript normal upper C normal upper N Baseline left-parenthesis upper I circled-times upper H right-parenthesis Math bar pipe bar symblom 0 mathematical right-angle Math bar pipe bar symblom psi mathematical right-angle equals StartFraction alpha Math bar pipe bar symblom 00 mathematical right-angle plus beta Math bar pipe bar symblom 11 mathematical right-angle 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=