Artificial Intelligence and Quantum Computing for Advanced Wireless Networks. Savo G. Glisic

Читать онлайн.
Название Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Автор произведения Savo G. Glisic
Жанр Программы
Серия
Издательство Программы
Год выпуска 0
isbn 9781119790310



Скачать книгу

w affect four components of vec(An, u), that is, a3, V2, a2 , and images. By the properties of derivatives for matrix products and the chain rule

      (5.86)equation

      holds. Thus, (vec (Ru,v)) · ∂vec(An,u)/∂w is the sum of four contributions. In order to derive a method of computing those terms, let Ia denote the a × a identity matrix. Let ⊗ be the Kronecker product, and suppose that Pa is a a2 × a matrix such that vec(diag (v) = Pa v for any vector vRa. By the Kronecker product’s properties, vec(AB) = (BIa) · vec(A) holds for matrices A, B, and Ia having compatible dimensions [67]. Thus, we have

equation

      which implies

equation

      Similarly, using the properties vec(ABC) =(CA) · vec(B) and vec(AB) =(IaA) · vec(B), it follows that

equation

      where dh is the number of hidden neurons. Then, we have

      (5.89)equation

      where the aforementioned Kronecker product properties have been used.

      holds, where images . A similar reasoning can be applied also to the third contribution.

      1 Instructions b = (∂ew/∂o)(∂Gw/∂x)(x, lN) and =(∂ew/∂o)(∂Gw/∂w)(x, lN): The terms b and c can be calculated by the backpropagation of ∂ew/∂o through the network that implements gw . Since such an operation must be repeated for each node, the time complexity of instructions b = (∂ew/∂o)(∂Gw/∂x)(x, lN) and c = (∂ew/∂o)(∂Gw/∂w)(x, lN) is for all the GNN models.

      2  Instruction = z(t)(∂Fw/∂w)(x, l): By definition of Fw, fw , and BP, we have(5.92)

      where y = [ln, xu, l(n, u), lu] and BP1 indicates that we are considering only the first part of the output of BP. Similarly

      (5.93)equation

      where y = [ln, xu, l(n, u), lu]. These two equations provide a direct method to compute d in positional and nonlinear GNNs, respectively.

      For linear GNNs, let