Artificial Intelligence and Quantum Computing for Advanced Wireless Networks. Savo G. Glisic

Читать онлайн.
Название Artificial Intelligence and Quantum Computing for Advanced Wireless Networks
Автор произведения Savo G. Glisic
Жанр Программы
Серия
Издательство Программы
Год выпуска 0
isbn 9781119790310



Скачать книгу

(3.72) of Chapter 3, which we repeat here with slightly different notation:

      (4.25)StartLayout 1st Row f Subscript t Baseline equals sigma left-parenthesis upper W Subscript f Baseline x Subscript t Baseline plus upper V Subscript f Baseline h Subscript t minus 1 Baseline plus b Subscript f Baseline right-parenthesis 2nd Row i Subscript t Baseline equals sigma left-parenthesis upper W Subscript i Baseline x Subscript t Baseline plus upper V Subscript i Baseline h Subscript t minus 1 Baseline plus b Subscript i Baseline right-parenthesis 3rd Row o Subscript t Baseline equals sigma left-parenthesis upper W Subscript o Baseline x Subscript t Baseline plus upper V Subscript o Baseline h Subscript t minus 1 Baseline plus b Subscript o Baseline right-parenthesis 4th Row c overTilde Subscript t Baseline equals hyperbolic tangent left-parenthesis upper W Subscript c Baseline x Subscript t Baseline plus upper V Subscript c Baseline h Subscript t minus 1 Baseline plus b Subscript c Baseline right-parenthesis 5th Row c Subscript t Baseline equals f Subscript t Baseline c Subscript t minus 1 Baseline plus i Subscript t Baseline c overTilde Subscript t Baseline 6th Row h Subscript t Baseline equals o Subscript t Baseline circled-dot hyperbolic tangent left-parenthesis c Subscript t Baseline right-parenthesis EndLayout

      where Wi is the i‐th row of the matrix W.

      (4.27)beta Subscript i comma j Baseline equals exp left-parenthesis upper W Subscript i Baseline left-parenthesis o Subscript upper T Baseline circled-dot left-parenthesis hyperbolic tangent left-parenthesis c Subscript j Baseline right-parenthesis minus hyperbolic tangent left-parenthesis c Subscript j minus 1 Baseline right-parenthesis right-parenthesis right-parenthesis comma

      so that

exp left-parenthesis upper W Subscript i Baseline h Subscript upper T Baseline right-parenthesis equals exp left-parenthesis sigma-summation Underscript j equals 1 Overscript upper T Endscripts upper W Subscript i Baseline left-parenthesis o Subscript upper T Baseline circled-dot left-parenthesis hyperbolic tangent left-parenthesis c Subscript j Baseline right-parenthesis minus hyperbolic tangent left-parenthesis c Subscript j minus 1 Baseline right-parenthesis right-parenthesis right-parenthesis equals product Underscript j equals 1 Overscript upper T Endscripts beta Subscript i comma j Baseline period

      As tanh (cj) − tanh (cj − 1) can be viewed as the update resulting from word j, so βi, j can be interpreted as the multiplicative contribution to pi by word j.

      This suggests a natural definition of an alternative score to βi, j , corresponding to augmenting the cj terms with the products of the forget gates to reflect the upstream changes made to cj after initially processing word j:

      (4.29)StartLayout 1st Row exp left-parenthesis upper W Subscript i Baseline h Subscript upper T Baseline right-parenthesis equals product Underscript j equals 1 Overscript upper T Endscripts exp left-parenthesis upper W Subscript i Baseline left-parenthesis o Subscript upper T Baseline circled-dot left-parenthesis hyperbolic tangent left-parenthesis sigma-summation Underscript k equals 1 Overscript j Endscripts e Subscript k comma upper T Baseline right-parenthesis minus hyperbolic tangent left-parenthesis sigma-summation Underscript k equals 1 Overscript j minus 1 Endscripts e Subscript k comma upper T Baseline right-parenthesis right-parenthesis right-parenthesis right-parenthesis 2nd Row equals product Underscript j equals 1 Overscript upper T Endscripts exp left-parenthesis upper W Subscript i Baseline left-parenthesis o Subscript upper T Baseline circled-dot left-parenthesis hyperbolic tangent left-parenthesis left-parenthesis product Underscript k equals j plus 1 Overscript t Endscripts f Subscript k Baseline right-parenthesis c Subscript j Baseline right-parenthesis minus hyperbolic tangent left-parenthesis left-parenthesis product Underscript k equals j Overscript t Endscripts f Subscript k Baseline right-parenthesis c Subscript j minus 1 Baseline right-parenthesis right-parenthesis right-parenthesis right-parenthesis 3rd Row equals product Underscript j equals 1 Overscript upper T Endscripts gamma Subscript i comma j EndLayout

      We now introduce a technique for using our variable importance scores to extract phrases from a trained LSTM. To do so, we search for phrases that consistently provide a large contribution to the prediction of a particular class relative to other classes. The utility of these patterns is validated by using them as input for a rules‐based classifier. For simplicity, we focus on the binary classification case.