Название | Smart Systems for Industrial Applications |
---|---|
Автор произведения | Группа авторов |
Жанр | Программы |
Серия | |
Издательство | Программы |
Год выпуска | 0 |
isbn | 9781119762041 |
References
1. Gaddi, A., Capello, F., Manca, M., eHealthcare and Quality of Life, Springer, Verlag Italia, 2014.
2. Oh, H., Rizo, C., Enkin, M., Jadad, A., What is ehealth (3): a systematic review of published definitions. J. Med. Internet Res., 7, 1, e1, 2005.
3. Gurung, M.S., Dorji, G., Khetrapal, S., Ra, S., Babu, G.R., and S Krishnamurthy, R.S., Transforming healthcare through Bhutan’s digital health strategy: progress to date. WHO South-East Asia Journal of Public Health, pp. 77–82, doi: 10.4103/2224-3151.264850.
4. Zulman, D.M., Jenchura, E.C., Cohen, D.M., Lewis, E.T., Houston, T.K., Asch, S.M., How Can eHealth Technology Address Challenges Related to Multimorbidity Perspectives from Patients with Multiple Chronic Conditions. J. Gen. Intern. Med., 30, 8, 1063–70, 2015.
5. Laxminarayan, S. and Istepanian, R.S.H., Unwired e-med: the next generation of wireless and internet telemedicine systems. IEEE Trans. Inf. Technol. Biomed., 4, 3, 189–193, Sept 2000, https://doi.org/10.1109/TITB.2000.5956074.
6. Germanakos, P., Mourlas, C., Samaras, G., A mobile agent approach for ubiquitous and personalized ehealth information systems, in: Proceedings of the Workshop on ‘Personalization for e-Health’ of the 10th International Conference on User Modeling (UM’05), Edinburgh, pp. 67–70, 2005.
7. Lee, J., Smart health: concepts and status of ubiquitous health with smartphones, in: ICTC 2011, pp. 388–389, Sept 2011, https://doi.org/10.1109/ICTC.2011.6082623.
8. Wu, G., Talwar, S., Johnsson, K., Himayat, N., Johnson, K.D., M2M: from mobile to embedded internet. IEEE Commun. Mag., 49, 4, 36–43, April 2011, https://doi.org/10.1109/MCOM.2011.5741144.
9. Jennifer Bresnick, J., Top 12 Ways Artificial Intelligence Will Impact Healthcare, World medical Innovation Forum, 2018, accessed 30 April 2018, https://healthitanalytics.com/news/top-12-ways-artificial-intelligence-will-impact-healthcare.
10. Micah Castelo, M., The Future of Artificial Intelligence in Healthcare, Healthtech Magazine, 2020, accessed 26 Feb 2020, https://healthtechmagazine.net/article/2020/02/future-artificial-intelligence-healthcare.
11. Sandeep Reddy (November 5th 2018). Use of Artificial Intelligence in Healthcare Delivery, eHealth - Making Healthcare Smarter, Thomas F. Heston, IntechOpen, DOI: 10.5772/intechopen.74714. Available from: https://www.intechopen.com/books/ehealth-making-health-care-smarter/use-of-artificial-intelligence-in-healthcare-delivery.
12. Murdoch, T.B. and Detsky, A.S., The inevitable application of big data to healthcare. JAMA, 309, 1351–2, 2013.
13. Kolker, E., Özdemir, V., Kolker, E., How Healthcare can refocus on its Super-Customers (Patients, n=1) and Customers (Doctors and Nurses) by Leveraging Lessons from Amazon, Uber, and Watson. OMICS, 20, 329–33, 2016.
14. Dilsizian, S.E. and Siegel, E.L., Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. Curr. Cardiol. Rep., 16, 441, 2014.
15. Bhavnani, S.P., Narula, J., Sengupta, P.P., Mobile technology and the digitization of healthcare. Eur. Heart J., 37, 1428–1438, 2016, https://doi.org/10.1093/eurheartj/ehv770.
16. Tison, G.H., Sanchez, J.M., Ballinger, B., Singh, A., Olgin, J.E., Pletcher, M.J., Vittinghoff, E., Lee, E.S., Fan, S.M., Gladstone, R.A. et al., Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiol., 3, 409–416, 2018, https://doi.org/10.1001/jamacardio.2018.0136.
17. Sengupta, P.P., Huang, Y.M., Bansal, M., Ashrafi, A., Fisher, M., Shameer, K., Gall, W., Dudley, J.T., Cognitive machine-learning algorithm for cardiac imaging: a pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ. Cardiovasc. Imaging, 9, e004330, 2016, https://doi.org/10.1161/CIRCIMAGING.115.004330.
18. Tsang, W., Salgo, I.S., Medvedofsky, D., Takeuchi, M., Prater, D., Weinert, L., Yamat, M., Mor-Avi, V., Patel, A.R., Lang, R.M., Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC: Cardiovasc. Imaging, 9, 769–782, 2016, https://doi.org/10.1016/j.jcmg.2015.12.020.
19. Lancaster, M.C., Salem Omar, A.M., Narula, S., Kulkarni, H., Narula, J., Sengupta, P.P., Phenotypic clustering of left ventricular diastolic function parameters: patterns and prognostic relevance. JACC: Cardiovasc. Imaging, 12, 7, 1149–1161, 2018, https://doi.org/10.1016/j.jcmg.2018.02.005. [epub].
20. Zhang, J., Gajjala, S., Agrawal, P., Tison, G.H., Hallock, L.A., Beussink-Nelson, L., Lassen, M.H., Fan, E., Aras, M.A., Jordan, C. et al., Fully automated echo-cardiogram interpretation in clinical practice. Circulation, 138, 1623–1635, 2018, (https://doi.org/10.1161/CIRCULATIONAHA.118.034338).
21.