Название | Fachbegriffe der Chemie |
---|---|
Автор произведения | Michael Wächter |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 0 |
isbn | 9783754182901 |
1 Thermodynamik ist die Lehre der energetischen Erscheinungen bei chemischen Reaktionen. (Hierzu gehören Wärme, elektrische Arbeit und Volumenarbeit bei Stoffumwandlungen in offenen, geschlossenen und isolierten Systemen, d.h. mit und ohne Energie- bzw. Stoffaustausch mit der Umgebung).
2 Die Aktivierungsenergie ist die Energiemenge, die einem Stoffgemisch zugefügt werden muss, damit dessen Reaktion in Gang kommt.
3 Eine exotherme Reaktion setzt aus einem Reaktionsgemisch Wärmeenergie frei (Umwandlung chemischer Energie in Reaktionswärme):Bei einer endothermen Reaktion wird Wärmeenergie vom Reaktionsgemisch aufgenommen (Umwandlung von Wärmeenergie in chemische Energie).
4 Eine Gleichgewichtsreaktion ist eine Stoffumwandlung, die gleichzeitig in zwei Richtungen verlaufen kann: A + B AB (auch: AB + CD AC + BD u.ähn.)Beispiel: Wenn Essigsäure CH3COOH und Ethanol C2H5OH zu Wasser und dem Aromastoff Essigsäure-Ethylester CH3COO-C2H5 reagieren, dann verläuft die Reaktion nach folgender Reaktionsgleichung: CH3COOH + C2H5OH CH3COO-C2H5 + H2O.
5 Im chem. Gleichgewicht läuft die Hin- und Rückreaktion im Gemisch gleichschnell, es gilt das Massenwirkungsgesetz (MWG): Das Verhältnis aus dem Produkt der Konzentration cder Reaktionsprodukte zum Produkt der Ausgangsstoffkonzentrationen bleibt gleich (ist konstant; Symbol der Konstante: KMWG): c(Produkte) KMWG = c(Edukte)Beispiel:Für die Reaktion A + B AB gilt das MWG: c(AB) KMWG = c(A) x c(B)
Für die Reaktion „Esterbildung“ (Gleichung: CH3COOH + C2H5OH
c(Ester) • c(Wasser) KMWG = c(Essigsäure) • c(Ethanol) = 4 .
Für die Rückreaktion ( Spaltung des Esters in Essigsäure und Ethanol) ergibt sich der Kehrwert:
c(Essigsäure) • c(Ethanol)
KMWG = c(Ester) • c(Wasser) = 0,25 = ¼ .
1 In einem Lösungsgleichgewicht herrscht zwischen dem Bodensatz ungelösten Feststoffes MA und der gesättigter Lösung mit der Sättigungskonzentration der Ionen M+ und A- ein Gleichgewichtszustand. Das Löslichkeitsprodukt KL eines Salzes MA im Hinblick auf den Lösevorgang MA(s) M+(aq) + A-(aq) beträgt dann: KL(MA) = c(M+(aq)) x c(A-(aq)).
2 In einem Säure-Base-Gleichgewicht HA+H2O A- + H3O+ berechnet sich der pKs-Wert als Maß für die Säurestärke nach dem Massenwirkungsgesetz (bei c(H2O)=konst.) nach folgenden Gleichungen:
c(H3O+) x c(A-) KS = c(HA) (Säurekonstante KS) und: pKS = - lg KS .
Hinweis: Je kleiner der pKs-Wert ist, desto stärker ist die Säure (vgl. Merksatz 84). Analog gibt es auch eine Basenkonstante K B und einen pK B -Wert für die Basenstärke.
1 Katalyse ist ein Vorgang, bei dem ein Stoff (Katalysator) eine chemische Reaktion ermöglicht oder beschleunigt, ohne selbst bei dieser Stoffumwandlung/Reaktion verbraucht zu werden (z.B. durch Erniedrigung der erforderlichen Aktivierungsenergie oder Verschiebung des chemischen Gleichgewichtes).
2 Die innere Energie Ueines stofflichen Systems besteht aus der thermischen Energie (ungerichtete Bewegung der Moleküle), der chemischen Bindungsenergie zwischen den Atomen (und den Wechselwirkungen mit elektrischen und magnetischen Dipolen) sowie der Potenziellen Energie der Atomkerne. Sie nimmt mit der Temperatur zu.
3 Die VolumenarbeitpVist die Arbeit W, die vom System gegen den Außendruck p verrichtet wird, um ein zusätzliches Volumen V einnehmen zu können.
4 EnthalpieHist die Wärmeenergiemenge, die von einer bestimmten Stoffmenge eines Reaktionsgemisches bei gleichbleibendem Druck freigesetzt wird.
Hinweise: Die molare Reaktionsenthalpie R H m ist der Quotient aus der Enthalpie(änderung) R H eines bei konstantem Druck reagierenden Systems und der Stoff-/Objektmenge der Formelumsätze. Eine negative molare Reaktionsenthalpie kennzeichnet exotherme Reaktionen: Die Innere Energie U des Systems nimmt ab. Eine positive molare Reaktionsenthalpie kennzeichnet endotherme Reaktionen.
1 Erster Hauptsatz der Thermodynamik (Energieerhaltungssatz): In einem abgeschlossenen System bleibt die Energie konstant, bei umkehrbaren (reversiblen)ebenso wie bei irreversiblen Prozessen.
1 Die Entropie ist das Maß an Wahrscheinlichkeit, in dem sich ein Reaktionsgemisch befindet, wobei der angestrebte Zustand niedrigster Ordnung (größter Unordnung) der Wahrscheinlichste ist (z.B. größtmögliche Teilchenzahl).
Hinweise: Zur Nutzung von Wärme durch eine Dampfmaschine, ein Kraftwerk oder auch andere Systeme ist nach Nicolas L. Sadi Carnot eine möglichst große Temperaturdifferenz nötig. Das heißt, dass es eine konstante Größe Q /T gibt. Diese Größe S = Q / Twird Entropie genannt. Sie wird in Joule pro Kelvin gemessen, bzw. in Carnot: 1 Ct = 1 J • K-1. Entropie kann als Ordnungszustand eines Systems aufgefasst werden: Die Entropie eines Systems nimmt mit steigender Unordnung zu. Sie hängt zudem mit der statistischen Wahrscheinlichkeit W des Zustandes eines Systems zusammen: S = k • ln W .Die Entropieänderung S chemischer Reaktionen kann aus tabellierten, molaren Standard-Entropien berechnet werden: RSm0 = Sm0 (Produkte) – Sm0 (Edukte). Bei positiven S-Werten nimmt die Entropie (die wahrscheinlichere Unordnung) des Systems zu.
Anders ausgedrückt lautet der Erste Hauptsatz (Merksatz 131) aus diesen Gründen oft auch: Energie bleibt stets erhalten, egal wie viel Entropie bei einem Vorgang erzeugt wird (sie kann nicht geschaffen oder vernichtet werden).
1 Zweiter Hauptsatz der Thermodynamik (Entropiesatz): Entropie kann zwar erzeugt, aber niemals vernichtet werden.
Hinweis: In einem abgeschlossenen System bleiben bei reversiblen Prozessen Exergie – das Energiepotenzial, das in nutzbare Arbeit verwandelt werden kann – und Anergie jeweils konstant. Bei irreversiblen Prozessen hingegen wird die Exergie in Anergie umgewandelt; Anergie kann prinzipiell nicht in Exergie umgewandelt werden). Anders ausgedrückt lautet der Zweite Hauptsatz daher auch: Entropieerzeugung macht einen Vorgang irreversibel, oder: die Gesamtentropie eines Systems und seiner Umgebung kann definitionsgemäß nicht verschwinden, sondern nur gleich bleiben oder zunehmen.
1 Dritter Hauptsatz: Die Entropie eines Idealkristalls am absoluten Nullpunkt T = 0 K ist gleich Null: S0K = 0.
2 Die Gibbs-Energie (Freie Enthalpie) G ergibt sich rechnerisch als Differenz aus der Enthalpie und dem Produkt von deren Temperatur und Entropie: G = H - TS.