Пушистые логарифмы. Андрей Анатольевич Сафонов

Читать онлайн.
Название Пушистые логарифмы
Автор произведения Андрей Анатольевич Сафонов
Жанр Философия
Серия
Издательство Философия
Год выпуска 0
isbn 9785005584243



Скачать книгу

нас явлений может показаться бессмысленным, но не сокрыты ли за этой бессмыслицей сокровенные аттракторы мечты?

      Геометрия пчелиных сот и тайна шестиугольных кругов

      Даже элементарные открытия, сделанные самостоятельно, могут сделать то, чего не сделают сотни зазубренных учебников, – вызвать настоящую теорию (изначально под этим словом пифагорейцы понимали мистический экстаз от соприкосновения с истиной). Теория – своего рода молния из страны смысла. Однажды, когда я готовил макароны, эта молния слегка коснулась меня. Я увидел, как раздувающиеся пузыри в кипящей воде в страшной давке за «место под солнцем» стали приобретать какие-то странные формы… Мгновенная вспышка, и я «увидел» ответ на вопрос, смутно терзавший меня с детства: почему в природе так часто встречаются шестиугольники? Пчелиные соты, клетки, узоры на панцирях черепах…

      Шестиугольник – идеальная фигура, чтобы замостить плоскость без пробелов. Это уже что-то, т. к. для подобной цели не подойдут ни круги, ни семи- и девятиугольники. Но откуда пчелы знают о таких геометрических тонкостях? И почему не используют более простые треугольники или квадраты, которые тоже легко подгоняются друг к другу?

      Для того чтобы пережить маленькую «теорию», делаем простую математическую модель без единой формулы. Возьмем горсть одинаковых монет. Одну поставим в центр, а другие расположим вокруг так, чтобы все они соприкасались друг с другом. Мы увидим между ними похожие на треугольники зазоры, из-за которых круглой плиткой мы плоскость не замостим. Но вот что интересно – сколько бы раз мы не проделывали этот эксперимент, монеток по краям всегда будет ровно шесть!

      Представим теперь, что монетки начинают раздуваться, как пузыри, пытаясь отвоевать друг у друга пустое пространство. Конкуренция деформирует личности и целые народы, чего уж говорить о кругах… В случае равномерного давления шесть точек соприкосновения разобьют окружность на шесть дуг, каждая из которых в конечном итоге распрямится в отрезок, и мы получим идеальное шестиугольное замощение. Круг, шар – наиболее естественная форма заполнения пространства – из центра во все стороны. При «честной» конкуренции круги становятся шестиугольниками. В случае же неравной борьбы получаются пятиугольники и другие альтернативные формы «замощения».

      Вряд ли данная геометрическая метаморфоза объяснит нам шестиугольность бензольного кольца, но на устройство сот, клеток, а возможно, и на какие-то тайны геополитики, вероятно, прольет какой-то свет.

      Фрактал «буржуйский сыр» и проколы в матрице

      Однажды, наблюдая с сыном за поведением капель растительного масла в воде, я вновь пережил вспышку «теории», в пифагорейском смысле этого слова. В этот раз круги не давили друг на друга, как при кипении воды или в пчелиных сотах. Метаморфоза как будто свернула