Computational Geomechanics. Manuel Pastor

Читать онлайн.
Название Computational Geomechanics
Автор произведения Manuel Pastor
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781118535301



Скачать книгу

has been included in the force term of the computer code SWANDYNE‐II (Chan 1995) although it is neglected in the left‐hand side of the final algebraic equation when the symmetric solution procedure is used.

      The above set defines the complete equation system for solution of the problem defined providing the necessary boundary conditions have been specified as in (2.18) and (2.19), i.e.

StartLayout 1st Row p Subscript w Baseline equals p Subscript w Baseline overbar o n normal upper Gamma equals normal upper Gamma Subscript p Baseline 2nd Row bold n Superscript normal upper T Baseline w equals bold n Superscript normal upper T Baseline bold k left-parenthesis minus italic nabla p Subscript w Baseline plus upper S Subscript w Baseline rho Subscript f Baseline bold b right-parenthesis equals w overTilde Subscript n Baseline o n normal upper Gamma equals normal upper Gamma Subscript w EndLayout

      Assuming isotropic permeability, the above equation becomes

bold k left-parenthesis minus StartFraction partial-differential p Subscript w Baseline Over partial-differential bold n EndFraction plus upper S Subscript w Baseline rho Subscript f Baseline bold n Superscript normal upper T Baseline bold b right-parenthesis equals w overTilde Subscript n Baseline equals minus q overbar o n normal upper Gamma equals normal upper Gamma Subscript w

      where q overbar Subscript n is the influx, i.e. having an opposite sign to the outflow w overbar Subscript n.

      The total boundary Γ is the union of its components, i.e.

normal upper Gamma equals normal upper Gamma Subscript t Baseline union normal upper Gamma Subscript u Baseline equals normal upper Gamma Subscript p Baseline union normal upper Gamma Subscript w

      

      3.2.2 Discretization of the Governing Equation in Space

      The spatial discretization involving the variables u and pw is achieved by suitable shape (or basis) functions, writing

      Note that the nodal values of the pore pressures are indicated with a superscript.

      (3.20)integral Underscript normal upper Omega Endscripts bold upper B Superscript normal upper T Baseline bold sigma d upper Omega plus left-bracket integral Underscript normal upper Omega Endscripts left-parenthesis bold upper N Superscript bold u Baseline right-parenthesis Superscript normal upper T Baseline rho bold upper N Superscript bold u Baseline d upper Omega right-bracket ModifyingAbove Above bold u overbar With two-dots equals bold f Superscript left-parenthesis bold 1 right-parenthesis

      where the matrix B is given as

      and the “load vector” f (1), equal in number of components to that of vector bold u overbar contains all the effects of body forces, and prescribed boundary tractions, i.e.

      (3.22)bold f Superscript left-parenthesis 1 right-parenthesis Baseline equals integral Underscript normal upper Omega Endscripts left-parenthesis bold upper N Superscript u Baseline right-parenthesis Superscript normal upper T Baseline rho bold b d upper Omega plus integral Underscript normal upper Gamma Subscript normal t Baseline Endscripts left-parenthesis bold upper N Superscript normal u Baseline right-parenthesis Superscript normal upper T Baseline bold t overbar d upper Gamma

      where

      (3.25)bold upper M equals integral Underscript normal upper Omega Endscripts left-parenthesis bold upper N Superscript u Baseline right-parenthesis Superscript normal upper T Baseline rho bold upper N Superscript u Baseline d upper Omega

      is the MASS MATRIX of the system and

      (3.26)bold upper Q equals integral Underscript normal upper Omega Endscripts bold upper B Superscript normal upper T Baseline italic alpha chi Subscript w Baseline bold m upper N Superscript 
            </div>
      	</div>
  	</div>
  	<hr>
  	<div class=