Computational Geomechanics. Manuel Pastor

Читать онлайн.
Название Computational Geomechanics
Автор произведения Manuel Pastor
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781118535301



Скачать книгу

Baseline upper K Superscript italic r pi Baseline Over mu Superscript pi Baseline EndFraction left-bracket minus p Subscript pi slash j Baseline plus rho Superscript pi Baseline left-parenthesis g Subscript j Baseline minus a Subscript j Superscript s Baseline minus a Subscript j Superscript italic pi s Baseline right-parenthesis right-bracket"/>

      The linear momentum balance equation for the solid phase is obtained in a similar way, taking into account Equations (2.68) instead of (2.67).

      (2.77)rho equals left-parenthesis 1 minus n right-parenthesis rho Superscript s Baseline plus italic n upper S Subscript w Baseline rho Superscript w Baseline plus italic n upper S Subscript a Baseline rho Superscript a

      we obtain the linear momentum balance equation for the whole multiphase medium

      The mass balance equations are derived next.

      The mass balance equation for air is derived in a similar way

      (2.81)n StartFraction upper D Overscript s Endscripts upper S Subscript a Baseline Over italic upper D t EndFraction plus upper S Subscript a Baseline ModifyingAbove u With ampersand c period dotab semicolon Subscript i slash i Baseline plus StartFraction upper S Subscript a Baseline n Over rho Superscript a Baseline EndFraction StartFraction upper D Overscript s Endscripts Over italic upper D t EndFraction left-parenthesis StartFraction upper M Subscript g Baseline Over italic theta upper R EndFraction p Subscript a Baseline right-parenthesis plus StartFraction 1 Over rho Superscript a Baseline EndFraction left-parenthesis italic n upper S Subscript a Baseline rho Superscript a Baseline v Subscript i Superscript italic a s Baseline right-parenthesis Subscript slash i Baseline equals 0

      To obtain the equations of Section 2.4.2, further simplifications are needed, which are introduced next.

      (2.82)sigma Subscript italic i j comma j Baseline minus rho ModifyingAbove u With two-dots Subscript i Baseline plus rho b Subscript i Baseline equals 0

      The linear momentum balance equation for fluids (2.76) by omitting all acceleration terms, as in Section 2.2.2, can be written for water

      (2.83)w Subscript i Baseline equals k Subscript italic w i j Baseline left-parenthesis minus p Subscript w Sub Subscript comma j Subscript Baseline plus rho Superscript w Baseline b Subscript j Baseline right-parenthesis

      where

eta Superscript w Baseline v Subscript i Superscript italic w s Baseline equals w Subscript i

      and

      and for air

      (2.85)