Частотный синтез на основе ФАПЧ. Обзор методов синтеза. Виталий Иванович Козлов

Читать онлайн.



Скачать книгу

FФД, используемая для сравнения в фазовом детекторе, может быть получена путём деления в R раз частоты Fr опорного источника. Тогда выражение для частоты Fc на выходе синтезатора может быть записано в виде

      FC=NFr/R.

      В качестве примера положим, что требуется получить сетку частот с шагом 10 кГц в диапазоне частот Fc=700÷800 МГц при использовании опорной частоты Fr, равной Fr=10 МГц. Тогда следует выбрать коэффициент деления R, равным R=1000, чтобы частота сравнения FФД оказалась равной FФД=10 кГц. Понятно, что поставленная задача будет решена при выборе коэффициента N в диапазоне значений от 70000 до 80000.

      Очевидным достоинством рассмотренной схемы является её исключительная простота. Однако имеются и весьма существенные недостатки. Помехи с выхода ФД модулируют ГУН, создавая боковые полосы дискретных помех в спектре сигнала. Для их подавления полоса пропускания ФНЧ должна быть по крайней мере на порядок меньше частоты сравнения FФД. Это существенно ограничивает быстродействие синтезатора.

      Кроме того, есть и другая проблема со спектральной чистотой сигнала. Выражение для фазового шума на выходе синтезатора в пределах полосы пропускания ФАПЧ можно записать как

      G=GФД+20lgN

      где GФД составляет сумму шумов собственно фазового детектора и шумов опорного источника и делителей частоты на N и R, пересчитанные ко входу ФД. Соответственно шумовой спектр сигнала существенно ухудшается при желании получить мелкую сетку, увеличивая коэффициент N. Также при этом, из-за соответствующего сужения полосы пропускания ФАПЧ, слабо подавляются шумы ГУН, что даёт дополнительный вклад в деградацию спектра сигнала.

      Названную проблему можно несколько смягчить, сделав коэффициент деления R так же, как и N, управляемым. Это позволяет получать сетку частот с более мелким шагом dF при частоте сравнения такого же порядка, как и в случае постоянства этих коэффициентов. Это можно показать с помощью Табл.1, в которую сведены значения R, FФД, N, dF и получаемой при этом частоты Fc.

      Таблица 1

      Как видно из таблицы, шаг сетки частот dF уменьшается на три порядка, но при этом диапазон возможных значений частоты Fc также сокращается до такой исключительно малой величины как всего лишь 5 кГц. Однако же не исключаются и такие уникальные случаи, в которых описанная идея может найти своё воплощение.

      Вместе с тем диапазон частот Fc может быть получен и более широким, если выбирать значения коэффициента R не столь большими, как это показано в Табл.2. Там этот коэффициент уменьшен на порядок, благодаря чему диапазон частот Fc расширен также на порядок, до 50 кГц. Но при этом шаг сетки стал значительно крупнее по сравнению с предыдущим случаем, максимальное его значение стало равным 990 Гц, и всё же он оказался на порядок меньшим, чем в варианте с постоянным значением FФД=10 кГц. Кроме того, на порядок возросла частота сравнения в ФД и соответственно