Название | Multimedia Security, Volume 1 |
---|---|
Автор произведения | William Puech |
Жанр | Зарубежная компьютерная литература |
Серия | |
Издательство | Зарубежная компьютерная литература |
Год выпуска | 0 |
isbn | 9781119901792 |
Lowe, D.G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.
Mahdian, B. and Saic, S. (2009). Using noise inconsistencies for blind image forensics. Image and Vision Computing, 27(10), 1497–1503.
Mastin, G.A. (1985). Adaptive filters for digital image noise smoothing: An evaluation. Computer Vision, Graphics, and Image Processing, 31(1), 103–121.
Mayer, O. and Stamm, M.C. (2020). Forensic similarity for digital images. IEEE Transactions on Information Forensics and Security, 15, 1331–1346.
Minami, S. and Zakhor, A. (1995). An optimization approach for removing blocking effects in transform coding. IEEE Transactions on Circuits and Systems for Video Technology, 5(2), 74–82.
Nikoukhah, T., Anger, J., Ehret, T., Colom, M., Morel, J., Grompone von Gioi, R. (2019). JPEG grid detection based on the number of DCT zeros and its application to automatic and localized forgery detection. In Conference on Computer Vision and Pattern Recognition Workshops. IEEE, Long Beach.
Nikoukhah, T., Colom, M., Morel, J.-M., Grompone von Gioi, R. (2020). Local JPEG grid detector via blocking artifacts, a forgery detection tool. Image Processing On Line, 10, 24–42.
Olsen, S.I. (1993). Estimation of noise in images: An evaluation. CVGIP: Graphical Models Image Processing, 55(4), 319–323.
Pan, X., Zhang, X., Lyu, S. (2011). Exposing image forgery with blind noise estimation. In Multimedia Workshop on Multimedia and Security. ACM, Buffalo.
Pevny, T. and Fridrich, J. (2008). Detection of double-compression in JPEG images for applications in steganography. IEEE Transactions on Information Forensics and Security, 3(2), 247–258.
Ponomarenko, N.N., Lukin, V.V., Zriakhov, M.S., Kaarna, A., Astola, J. (2007). An automatic approach to lossy compression of aviris images. In International Geoscience and Remote Sensing Symposium. IEEE, Barcelona.
Popescu, A. and Farid, H. (2005). Exposing digital forgeries in color filter array interpolated images. Transactions on Signal Processing, 53(10), 3948–3959.
Rank, K., Lendl, M., Unbehauen, R. (1999). Estimation of image noise variance. IEEE Proceedings – Vision, Image and Signal Processing, 146(2), 80–84.
Shin, H.J., Jeon, J.J., Eom, I.K. (2017). Color filter array pattern identification using variance of color difference image. Journal of Electronic Imaging, 26(4), 1–12.
Thai, T.H., Cogranne, R., Retraint, F., Doan, T. (2017). JPEG quantization step estimation and its applications to digital image forensics. IEEE Transactions on Information Forensics and Security, 12(1), 123–133.
Voorhees, H. and Poggio, T. (1987). Detecting textons and texture boundaries in natural images. In International Conference on Computer Vision. IEEE, London.
Wallace, G.K. (1992). The JPEG still picture compression standard. IEEE Transactions on Consumer Electronics, 38(1), xviii–xxxiv.
Wang, S.-Y., Wang, O., Owens, A., Zhang, R., Efros, A.A. (2019). Detecting photoshopped faces by scripting photoshop. In International Conference on Computer Vision. IEEE, Seoul.
Wen, B., Zhu, Y., Subramanian, R., Ng, T.-T., Shen, X., Winkler, S. (2016). Coverage – A novel database for copy-move forgery detection. In International Conference on Image Processing. IEEE, Phoenix.
Wu, Y., Abd-Almageed, W., Natarajan, P. (2018). Busternet: Detecting copy-move image forgery with source/target localization. In European Conference on Computer Vision. IEEE, Munich.
Yao, H., Wang, S., Zhang, X., Qin, C., Wang, J. (2017). Detecting image splicing based on noise level inconsistency. Multimedia Tools and Applications, 76(10), 12457–12479.
Ye, S., Sun, Q., Chang, E.-C. (2007). Detecting digital image forgeries by measuring inconsistencies of blocking artifact. In International Conference on Multimedia and Expo. IEEE, Beijing.
Zhou, P., Han, X., Morariu, V.I., Davis, L.S. (2018). Learning rich features for image manipulation detection. In Conference on Computer Vision and Pattern Recognition. IEEE, Salk Lake City.
1 For a color version of all figures in this chapter, see www.iste.co.uk/puech/multimedia1.zip.
2 1 Available at: www.thispersondoesnotexist.com.
3 2 ENFSI: European Network of Forensic Science Institutes.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.