Nonlinear Filters. Simon Haykin

Читать онлайн.
Название Nonlinear Filters
Автор произведения Simon Haykin
Жанр Программы
Серия
Издательство Программы
Год выпуска 0
isbn 9781119078159



Скачать книгу

form:

      where

      and

      (2.23)bold-script upper Y Subscript k Baseline equals Start 4 By 1 Matrix 1st Row bold y Subscript k Baseline minus bold upper D bold u Subscript k Baseline 2nd Row bold y Subscript k plus 1 Baseline minus bold upper C bold upper B bold u Subscript k Baseline minus bold upper D bold u Subscript k plus 1 Baseline 3rd Row vertical-ellipsis 4th Row bold y Subscript k plus n minus 1 Baseline minus bold upper C bold upper A Superscript n minus 2 Baseline bold upper B bold u Subscript k Baseline minus midline-horizontal-ellipsis minus bold upper C bold upper B bold u Subscript k plus n minus 2 Baseline minus bold upper D bold u Subscript k plus n minus 1 Baseline EndMatrix period

      (2.24)bold x 0 equals bold-script upper O Superscript negative 1 Baseline bold-script upper Y 0 period

      Since bold-script upper O depends only on matrices bold upper A and bold upper C, for an observable system, it is equivalently said that the pair left-parenthesis bold upper A comma bold upper C right-parenthesis is observable. Any initial state that has a component in the null space of bold-script upper O cannot be uniquely determined from measurements; therefore, the null space of bold-script upper O is called the unobservable subspace of the system. As mentioned before, the system is detectable if the unobservable subspace does not include unstable modes of bold upper A, which are associated with the eigenvalues that are outside the unit circle.

      While the observable subspace of the linear system, denoted by bold upper T Superscript upper O, is composed of the basis vectors of the range of bold-script upper O, the unobservable subspace of the linear system, denoted by bold upper T Superscript upper O overbar, is composed of the basis vectors of the null space of bold-script upper O. These two subspaces can be combined to form the following nonsingular transformation matrix:

      (2.25)bold upper T equals StartBinomialOrMatrix bold upper T Superscript upper O Baseline Choose bold upper T Superscript upper O overbar Baseline EndBinomialOrMatrix period

      If we apply this transformation to the state vector bold x such that:

      (2.26)bold z Subscript k Baseline equals bold upper T bold x Subscript k Baseline comma

      the transformed state vector bold z will be partitioned to observable modes, bold z Superscript o, and unobservable modes, bold z Superscript o overbar:

      (2.27)bold z Subscript k Baseline equals StartBinomialOrMatrix bold z Subscript k Superscript o Baseline Choose bold z Subscript k Superscript o overbar Baseline EndBinomialOrMatrix period

      or equivalently as: