Название | The Official (ISC)2 SSCP CBK Reference |
---|---|
Автор произведения | Mike Wills |
Жанр | Зарубежная компьютерная литература |
Серия | |
Издательство | Зарубежная компьютерная литература |
Год выпуска | 0 |
isbn | 9781119874874 |
Authentication
This element of the classic CIANA set of information security characteristics brings together many threads from all the others regarding permission to act. None of the other attributes of information security can be implemented, managed, or controlled if the system cannot unambiguously identify the person or process that is trying to take an action involving that system and any or all of its elements and then limit or control their actions to an established, restricted set. Note that the word authentication is used in two different ways.
Information is authenticated by confirming that all of the metadata about its creation, transmission, and receipt convey that the chain of trust from creator through sender to recipient has not been violated. Authentication of a sent email or file demonstrates that it was created and sent by a known and trusted person or process. This requires that access control as a process grants permission to users or the tasks executing on their behalf to access a system's resources, use them, change them, share them with others, or create new information assets in that system.
In access control terms, authentication validates that the requesting subject (process or user) is who or what they claim that they are and that this identity is known to the system. Authorization then allows that authenticated identity to perform a specific set of tasks. Taken together, this is what determines whether you are using someone else's computers or networks with their permission and approval or are trespassing upon their property.
1984 was a watershed year in public law in this regard, for in the Computer Fraud and Abuse Act (CFAA), the U.S. Congress established that entering into the intangible property that is the virtual world inside a computer system, network, or its storage subsystems was an action comparable to entering into a building or onto a piece of land. Entry onto (or into) real, tangible property without permission or authority is criminal trespass. CFAA extended that same concept to unauthorized entry into the virtual worlds of our information systems. Since then, many changes to public law in the United States and a number of other countries have expanded the list of acts considered as crimes, possibly expanding it too much in the eyes of many civil liberties watchdogs. It's important to recognize that almost every computer crime possible has within it a violation of permissions to act or an attempt to fraudulently misrepresent the identity of a person, process, or other information system's element, asset, or component in order to circumvent such restrictions on permitted actions. These authenticity violations are, if you would, the fundamental dishonesty, the lie behind the violation of trust that is at the heart of the crime.
Safety
SUNBURST and other attacks in 2020 and 2021 highlighted how little attention many organizations were paying to the physical control and interaction side of their information systems. Enterprises that did not directly use IT to control manufacturing systems, or command and control vehicles and heavy machinery, believed themselves safe from physical harm, and yet would blithely invest in smart buildings and IoT devices for use in their office environments. They believed that these operational technologies—OT systems that directly cause physical motion or action, or monitor and supervise systems that do—were sufficiently separated from their IT systems, such as their corporate data centers, that there was little danger of a vulnerability on one side of that IT-OT interface from causing harm to systems, data, and people on the other side. That has been shown to be a false hope.
Operational technologies (OT) include industrial control systems (ICS) and the supervisory, control, and data acquisition (SCADA) systems that direct their activities. OT also includes Internet of Things (IoT) devices, autonomous, mobile machines (from custodial devices to chaotic warehouse forklifts), and robots. Most smart city systems, particularly their mass transit, water and sewer, traffic control, and communications management systems are part of the OT world, as are smart building environmental, power, and security management systems at work and in the home. This list of OT use cases grows every day, and in each case, there are data sharing and collaborative control and supervisory linkages with IT systems at many levels. And in most cases, device control involves switching and detecting AC and DC power and signals as part of controlling physical actuators and sensors.
As older OT systems are being phased out, newer systems tend to be making greater use of the Common Industrial Protocol (CIP). This is a feature-rich set of functions that are used within OT architectures to provide management, real-time control, data acquisition, and safety intervention across an architecture. CIP can operate over IP networks, which allows OT regional control workstations to easily interact with organizational IT systems. OT and IT systems both share common problems, such as the challenges of establishing and maintaining a secure supply chain for software, firmware, and hardware updates. Access control problems are quite common; the information security hygiene measures you need to apply to almost every IT systems environment must also be applied to your organization's OT systems, although with different techniques and tools. Integrated visibility—having a SIEM-like insight into the combined IT / OT architecture of your organization—can be achieved, but it's not as straightforward as some vendors may make it seem.
Safety, like security, is an end-to-end responsibility. It's no wonder that some cultures and languages combine both in a single word. For example, in Spanish seguridad unifies both safety and security as one integrated concept, need, and mind-set.
Fundamental Security Control Principles
Several control principles must be taken into account when developing, implementing, and monitoring people-focused information security risk mitigation controls. Of these, the three most important are need to know, separation of duties, and least privilege. These basic principles are applied in different ways and with different control mechanisms. However, a solid understanding of the principles is essential to evaluating a control's effectiveness and applicability to a particular circumstance.
Need to Know
Security classification and categorization should be the linch pin that ties together the organization's information security and risk mitigation efforts. It's what separates the highest-leverage proprietary information from the routine, nearly-public-knowledge facts and figures. Information classification schemes drive three major characteristics of your information security operations and administration.
Internal boundaries for information control: Many business processes have “insider knowledge” needed to inform decisions or exert control over risky, hazardous, or sensitive sequences of actions. These can and should be encapsulated with a layer that hides that inside knowledge by allowing controlled “write-up” of inputs and “write-down” of outputs to the points where they interface with other business processes. These boundaries surround data at higher levels, and the trusted processes that can manipulate or see it, from outer, surrounding layers of processes that perforce operate at lower levels of trust. (It's not a coincidence that that sounds like a threat surface.)
Standards for trust and confidence: It's only logical to require higher levels of trustworthiness for the people, processes, and systems that deal with our most vital information than we would need for those that handle low-risk information. In most cases, greater costs are incurred to validate hardware, software, vendors, our supply chain, and our people to higher levels of trust and confidence; as with all risk mitigation decisions, cost-effectiveness should be a decision factor. The information classification standards and guide should directly lead to answering the question of how much trustworthiness is enough.
Measures of merit for information security processes: The level of information classification should dictate how we measure or assess the effectiveness of the security measures put in place to protect it.
Taken together these form a powerful set of functional requirements for the design not just of our information security processes but of our business processes as well! But first, we need to translate these into two control or cybernetic principles.
Least