Machine Learning Paradigm for Internet of Things Applications. Группа авторов

Читать онлайн.
Название Machine Learning Paradigm for Internet of Things Applications
Автор произведения Группа авторов
Жанр Программы
Серия
Издательство Программы
Год выпуска 0
isbn 9781119763475



Скачать книгу

rate.Figure 3.4 Data publishing security level.

      4 Chapter 4Figure 4.1 Domain technologies aiding Industry 4.0.Figure 4.2 Industrial production monitoring system through IIoT.Figure 4.3 Production unit in industries.Figure 4.4 Programming chart of digital twin creation.Figure 4.5 Digital twin design of production monitoring unit.Figure 4.6 Network round trip delay time.

      5 Chapter 5Figure 5.1 Example of text CAPTCHA.Figure 5.2 Image-based captcha.Figure 5.3 Confusing character in a Google CAPTCHA.Figure 5.4 Segmentation method based on individual character.Figure 5.5 Segmented CAPTCHA image.Figure 5.6 Graphical operation made CAPTCHA image.Figure 5.7 Graphical sesign CAPTCHA in online application.

      6 Chapter 6Figure 6.1 CNN feature extraction structure diagram in deep learning.Figure 6.2 (a) Input image; (b) Output image. (c) Input image; (d) Output image....Figure 6.3 Smart IoT-enabled traffic signs recognizing with high accuracy using ...

      7 Chapter 7Figure 7.1 Evaluation structure of recommender system.Figure 7.2 ROC-AUC curve.Figure 7.3 Types of user study.Figure 7.4 Basic structure of A/B test.Figure 7.5 Process of data mining in RS.Figure 7.6 Rating prediction through matrix factorization.Figure 7.7 Process flow of offline evaluation.Figure 7.8 Illustration of IBCF.Figure 7.9 Performance evaluation of Random vs. SVD.Figure 7.10 Performance evaluation of SVD vs. SVD++.Figure 7.11 Novelty calculation of Random, SVD, and SVD++.

      8 Chapter 8Figure 8.1 Convolutional Neural Network (CNN).Figure 8.2 Dataflow diagram.Figure 8.3 Safety equipment detecting.Figure 8.4 Detecting mask using deep learning.Figure 8.5 Detecting body temperature using thermal sensor.Figure 8.6 Raspberry Pi 3 connected with smart Locking door.

      9 Chapter 9Figure 9.1 Silhouette analysis on K-means clustering on sample data with n_clust...Figure 9.2 City market hub marked in red and the market locations to deliver goo...Figure 9.3 Assigned vehicle route for a key market hub.Figure 9.4 Sample output for the depot (0).

      10 Chapter 10Figure 10.1 Fake news evaluation matrix.Figure 10.2 Feature extraction.Figure 10.3 Confusion matrix of logistic regression.Figure 10.4 Confusion matrix of Naïve Bayes.Figure 10.5 Confusion matrix for random forest classifier.Figure 10.6 Confusion matrix for XGBoost algorithm.Figure 10.7 Accuracy level of machine learning algorithms.Figure 10.8 ROC curve of random forest for all four classes.

      11 Chapter 11Figure 11.1 The paradigm for ML on Big data (MLBiD).

      12 Chapter 12Figure 12.1 Internet of Underwater Things basic model.Figure 12.2 Architecture of IoUT.Figure 12.3 Applications of IoUT.Figure 12.4 Average communication cost vs. node mobility.Figure 12.5 Energy consumption vs number of nodes.

      13 Chapter 13Figure 13.1 Concept of IoUTs.Figure 13.2 Concept and devices used in IoUT.Figure 13.3 Different routing protocols in IoUT.Figure 13.4 Multipoint relays in OLSR.Figure 13.5 The relationship between S and L in GFGD.Figure 13.6 A 3D logical grid view of EMGGR protocol.Figure 13.7 The probability of ACK’s collision.Figure 13.8 Operations in DRP.Figure 13.9 Delivery ratio vs. number of nodes.Figure 13.10 Energy consumption vs. number of nodes.

      14 Chapter 14Figure 14.1 (a) Pneumonia x-ray image, (b) Healthy x-ray image.Figure 14.2 Xception network architecture.Figure 14.3 (a) Model accuracy, (b) Model loss.Figure 14.4 Confusion matrix.

      List of Tables

      1 Chapter 2Table 2.1 Feasibility study summary.Table 2.2 Harvest prediction: Raw data fields.Table 2.3 Paddy harvest prediction - Data set.Table 2.4 Demand predict: Raw data fields.Table 2.5 Rice demand prediction: Data set.Table 2.6 Mutation rate effect.Table 2.7 Mutation probability effect.

      2 Chapter 3Table 3.1 Classification accuracy.

      3 Chapter 5Table 5.1 Text-based CAPTCHA used in commercial website.Table 5.2 Breaking methodology and success rate of various sources.Table 5.3 Pixel value changed entry.Table 5.4 Look up table entry.

      4 Chapter 7Table 7.1 Offline evaluation metrics.Table 7.2 Illustration of confusion matrix.Table 7.3 Overview of additional metrics.Table 7.4 Overview of filtering techniques.Table 7.5 Overview of classifier algorithm.Table 7.6 Overview of the explored dataset.Table 7.7 System generated metric results using MovieLens with Random and SVD wh...Table 7.8 System generated metric results using MovieLens with SVD and SVD++ whe...

      5 Chapter 8Table 8.1 Raspberry Pi history with version and configuration.

      6 Chapter 9Table 9.1 Phase 2: algorithm for key hub identification.Table 9.2 Phase 3: algorithm for vehicle routing.

      7 Chapter 13Table 13.1 Comparison of various routing protocols for different quality paramet...

      8 Chapter 14Table 14.1 Dataset description.Table 14.2 Model metric parameters.

      Guide

      1  Cover

      2  Table of Contents

      3  Title Page

      4  Copyright

      5  Preface

      6  Begin Reading

      7  Index

      8  End User License Agreement

      Pages

      1  v

      2  ii

      3  iii

      4  iv

      5  xiii

      6  xiv

      7  1

      8  2

      9  3

      10  4

      11  5

      12  6

      13  7

      14  8

      15  9