Distributed Acoustic Sensing in Geophysics. Группа авторов

Читать онлайн.
Название Distributed Acoustic Sensing in Geophysics
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119521778



Скачать книгу

4.3 with C = mΔLMI, where m is the modulation index and ΔLMI is the maximum length difference variation. Hence, the total phase of the interference light is:

      (4.4)StartLayout 1st Row phi left-parenthesis t right-parenthesis equals upper C dot cosine left-parenthesis omega Subscript c Baseline t right-parenthesis plus beta upper L Subscript upper M upper I Baseline plus normal upper Delta phi left-parenthesis t right-parenthesis 2nd Row equals upper C dot cosine left-parenthesis omega Subscript c Baseline t right-parenthesis plus phi left-parenthesis t right-parenthesis EndLayout

      And the interference intensity is rewritten as:

      (4.5)upper I left-parenthesis t right-parenthesis equals upper I Subscript upper D Baseline plus upper I Subscript upper C Baseline cosine left-bracket upper C dot cosine left-parenthesis omega Subscript c Baseline t right-parenthesis plus phi left-parenthesis t right-parenthesis right-bracket

      After being multiplied separately with fundamental and second harmonic carriers cos(ωct) andcos(2ωct), and later with low‐pass filtering, the in‐phase and quadrature components II(t) and IQ(t) are represented as (Dandridge et al., 1982):

      (4.6)StartLayout 1st Row upper I left-parenthesis t right-parenthesis equals minus upper I Subscript c Baseline upper J 1 left-parenthesis upper C right-parenthesis dot sine phi left-parenthesis t right-parenthesis 2nd Row upper Q left-parenthesis t right-parenthesis equals minus upper I Subscript c Baseline upper J 2 left-parenthesis upper C right-parenthesis dot cosine phi left-parenthesis t right-parenthesis EndLayout

      where J1(C) and J2(C) are the first‐order and the second‐order Bessel function, respectively, of the first kind. When C is equal to 2.63, it satisfies J1(C) = J2(C). Thus, the phase φ(t) is calculated by:

      (4.7)phi left-parenthesis t right-parenthesis equals arc tangent left-bracket upper I left-parenthesis t right-parenthesis slash upper Q left-parenthesis t right-parenthesis right-bracket period

image image

      Under the equation δε = δφ/(2πnLMI/λ), the strain sensitivity is mainly determined by the phase noise δφ and the spatial resolution LMI (defined as the gauge length [Masoudi et al., 2013]). The phase noise is shown in Figure 4.3b, and the average value is around 5 × 10‐4rad/√Hz. With the designed spatial resolution LMI = 10 m, the minimum detected strain of this PGC‐DAS system is as small as 8.5 pε/√Hz.

image