Distributed Acoustic Sensing in Geophysics. Группа авторов

Читать онлайн.
Название Distributed Acoustic Sensing in Geophysics
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119521778



Скачать книгу

seismic profile on wireline cable. Paper presented at SPWLA 55th Annual Logging Symposium, Abu Dhabi, UAE.

      6 Gabai, H., Shpatz, I., & Eyal, A. (2017). Lumped Rayleigh reflectors. Optics Letters, 42(21), 4529–4531. doi:10.1364/OL.42.004529

      7 Harma, A., McKinney, M. F., & Skowronek, J. (2005). Automatic surveillance of the acoustic activity in our living environment. Paper presented at 2005 IEEE International Conference on Multimedia and Expo, Amsterdam, Netherlands.

      8 He, X., Xie, S., Liu, F., Cao, S., Gu, L., Zheng, X., & Zhang, M. (2017). Multi‐event waveform‐retrieved distributed optical fiber acoustic sensor using dual‐pulse heterodyne phase‐sensitive OTDR. Optics Letters, 42(3), 442–445. doi: 10.1364/OL.42.000442

      9 Jagannathan, S., Bertsatos, I., Symonds, D., Chen, T., Nia, H., Jain, A. D., et al. (2009). Ocean acoustic waveguide remote sensing (OAWRS) of marine ecosystems. Marine Ecology Progress Series, 395, 137–160. doi:10.3354/meps08266

      10 Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke A., Aghayev R., et al. (2018). Dynamic strain determination using fibre‐optic cables allows imaging of seismological and structural features. Nature Communications, 9(1), 2509. doi:10.1038/s41467‐018‐04860‐y

      11 Loranger, S., Gagné, M., Lambin‐Iezzi, V., & Kashyap, R. (2015). Rayleigh scatter based order of magnitude increase in distributed temperature and strain sensing by simple UV exposure of optical fibre. Scientific Reports, 5, 11177. doi: 10.1038/srep11177

      12 Martins, H. F., Martin‐Lopez, S., Corredera, P., Filograno, M. L., Frazão, O., & Gonzalez‐Herraez, M. (2013). Coherent noise reduction in high visibility phase‐sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves. Journal of Lightwave Technology, 31(23), 3631–3637. doi:10.1109/JLT.2013.2286223

      13 Masoudi, A., Belal, M., & Newson, T. P. (2013). A distributed optical fibre dynamic strain sensor based on phase‐OTDR. Measurement Science and Technology, 24(8), 085204. doi:10.1088/0957‐0233/24/8/085204

      14 Mateeva, A., Lopez, J., Potters, H., Mestayer, J., Cox, B., Kiyashchenko, D., et al. (2014). Distributed acoustic sensing for reservoir monitoring with vertical seismic profiling. Geophysical Prospecting, 62(4), 679–692. doi: 10.1111/1365‐2478.12116

      15 Mateeva, A., Mestayer, J., Cox, B., Kiyashchenko, D., Wills, P., Lopez, J., et al. (2012). Advances in Distributed Acoustic Sensing (DAS) for VSP. Paper presented at SEG Annual Meeting, Society of Exploration Geophysicists.

      16 Mestayer, J., Cox, B., Wills, P., Kiyashchenko, D., Lopez, J., Costello, M., et al. (2011). Field trials of distributed acoustic sensing for geophysical monitoring. Paper presented at SEG Annual Meeting, Society of Exploration Geophysicists.

      17 Michaels, T. E., Michaels, J. E., Mi, B., & Ruzzene, M. (2005). Damage detection in plate structures using sparse ultrasonic transducer arrays and acoustic wavefield imaging. AIP Conference Proceedings, 760, 938–945. https:// doi.org/10.1063/1.1916774

      18 Molenaar, M. M., Hill, D., Webster, P., Fidan, E., & Birch, B. (2012). First downhole application of distributed acoustic sensing for hydraulic‐fracturing monitoring and diagnostics. SPE Drilling & Completion, 27(01), 32–38. doi:10.2118/140561‐MS.7

      19 Ni, S., Kanamori, H., & Helmberger, D. (2005). Seismology: Energy radiation from the Sumatra earthquake. Nature, 434(7033), 582. doi: 10.1038/434582a

      20 Ni, S., Tan, E., Gurnis, M., & Helmberger, D. (2002). Sharp sides to the African superplume. Science, 296(5574), 1850–1852. doi: 10.1126/science.1070698

      21 Wang, S., Fan, X., Liu, Q., & He, Z. (2015). Distributed fiber‐optic vibration sensing based on phase extraction from time‐gated digital OFDR. Optics Express, 2015, 23(26), 33301–33309. doi: 10.1364/OE.23.033301

      22 Yamate, T., Fujisawa, G., & Ikegami, T. (2017). Optical sensors for the exploration of oil and gas. Journal of Lightwave Technology, 35(16), 3538–3545. doi: 10.1109/JLT.2016.2614544

      23 Yang, M., Bai, W., Guo, H., Wen, H., Yu, H., & Jiang, D. (2016). Huge capacity fiber‐optic sensing network based on ultra‐weak draw tower gratings. Photonic Sensors, 6(1), 26–41. doi:10.1007/s13320‐015‐0298‐0

      24 Zhu, F., Zhang, Y., Xia, L., Wu, X., & Zhang, X. (2015). Improved Φ‐OTDR sensing system for high‐precision dynamic strain measurement based on ultra‐weak fiber Bragg grating array. Journal of Lightwave Technology, 33(23), 4775–4780. doi: 10.1109/JLT.2015.2477243

       Tuanwei Xu, Shengwen Feng, Fang Li, Lilong Ma, and Kaiheng Yang

       Key Laboratories of Transducer Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China; and

       College of Materials Science and Opto-Electronic Technology University of Chinese Academy of Sciences, Beijing, China

      ABSTRACT

      We demonstrate a real‐time distributed acoustic sensing (DAS) system based on phase‐sensitive optical time domain reflectometry (Φ‐OTDR) and phase‐generated carrier (PGC) demodulation algorithm. An unbalanced Michelson interferometer (MI) with specific phase modulation is introduced to overcome phase fading caused by initial phase shift in fiber optic interferometer sensing. Owing to its relatively low data requirement and polarization‐independent structure, PGC‐DAS system exhibits the superiorities of real‐time signal processing and Rayleigh polarization‐induced fading suppression. A proof‐of‐concept system is constructed to demonstrate feasibility and sensing performance. Corresponding to the average phase noise of ~5 × 10‐4 rad/√Hz, a strain sensitivity of 8.5 pε/√Hz is achieved with a spatial resolution of 10 m, as well as a frequency response range of 2 Hz to 1 kHz over 10 km sensing distance. Further, a field trial of this system is presented to validate it in qualitative seismic monitoring on land.

      DAS is an advanced technique developed in recent years to accurately measure ground vibration via fiber optic cables. DAS presents a possible new frontier for recording earthquake waves and other seismic signals in a wide range of research and public safety arenas (Juarez et al., 2005; Parker et al., 2014; Tanimola & Hill, 2009). It repurposes standard telecommunication fiber optic cables as a long series of single‐component, in‐line strain, or strain‐rate sensors, which is a completely different way from conventional deployments of nodal devices. DAS can sample passing seismic waves at locations every few meters or closer along paths stretching for tens of kilometers. Therefore, DAS has many advantages, such as passivity, resistance to electromagnetic interference, and cost‐effectiveness.