Название | Python Machine Learning |
---|---|
Автор произведения | Vahid Mirjalili |
Жанр | Математика |
Серия | |
Издательство | Математика |
Год выпуска | 0 |
isbn | 9788426727725 |
class AdalineSGD(object):
"""ADAptive LInear NEuron classifier.
Parameters
------------
eta : float
Learning rate (between 0.0 and 1.0)
n_iter : int
Passes over the training dataset.
shuffle : bool (default: True)
Shuffles training data every epoch if True
to prevent cycles.
random_state : int
Random number generator seed for random weight
initialization.
Attributes
-----------
w_ : 1d-array
Weights after fitting.
cost_ : list
Sum-of-squares cost function value averaged over all
training samples in each epoch.
"""
def __init__(self, eta=0.01, n_iter=10,
shuffle=True, random_state=None):
self.eta = eta
self.n_iter = n_iter
self.w_initialized = False
self.shuffle = shuffle
self.random_state = random_state
def fit(self, X, y):
""" Fit training data.
Parameters
----------
X : {array-like}, shape = [n_samples, n_features]
Training vectors, where n_samples is the number
of samples and
n_features is the number of features.
y : array-like, shape = [n_samples]
Target values.
Returns
-------
self : object
"""
self._initialize_weights(X.shape[1])
self.cost_ = []
for i in range(self.n_iter):
if self.shuffle:
X, y = self._shuffle(X, y)
cost = []
for xi, target in zip(X, y):
cost.append(self._update_weights(xi, target))
avg_cost = sum(cost) / len(y)
self.cost_.append(avg_cost)
return self
def partial_fit(self, X, y):
"""Fit training data without reinitializing the weights"""
if not self.w_initialized:
self._initialize_weights(X.shape[1])
if y.ravel().shape[0] > 1:
for xi, target in zip(X, y):
self._update_weights(xi, target)
else:
self._update_weights(X, y)
return self
def _shuffle(self, X, y):
"""Shuffle training data"""
r = self.rgen.permutation(len(y))
return X[r], y[r]
def _initialize_weights(self, m):
"""Initialize weights to small random numbers"""
self.rgen = np.random.RandomState(self.random_state)
self.w_ = self.rgen.normal(loc=0.0, scale=0.01,
size=1 + m)
self.w_initialized = True
def _update_weights(self, xi, target):
"""Apply Adaline learning rule to update the weights"""
output = self.activation(self.net_input(xi))
error = (target - output)
self.w_[1:] += self.eta * xi.dot(error)
self.w_[0] += self.eta * error
cost = 0.5 * error**2
return cost
def net_input(self, X):
"""Calculate net input"""
return np.dot(X, self.w_[1:]) + self.w_[0]
def activation(self, X):
"""Compute linear activation"""
return X
def predict(self, X):
"""Return class label after unit step"""
return np.where(self.activation(self.net_input(X))
>= 0.0, 1, -1)
El método _shuffle que estamos utilizando ahora en el clasificador AdalineSGD funciona del siguiente modo: a través de la función permutation en np.random generamos una secuencia aleatoria de números únicos en el rango de 0 a 100. Estos números se pueden utilizar después como índice para mezclar nuestra matriz de características y el vector de etiqueta de clase.
Podemos utilizar el método fit para entrenar el clasificador AdalineSGD y el método plot_decision_regions para representar los resultados del entrenamiento:
>>> ada = AdalineSGD(n_iter=15, eta=0.01, random_state=1)
>>> ada.fit(X_std, y)
>>> plot_decision_regions(X_std, y, classifier=ada)
>>> plt.title('Adaline - Stochastic Gradient Descent')
>>> plt.xlabel('sepal length [standardized]')
>>> plt.ylabel('petal length [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.show()
>>> plt.plot(range(1, len(ada.cost_) + 1), ada.cost_, marker='o')
>>> plt.xlabel('Epochs')
>>> plt.ylabel('Average Cost')
>>> plt.show()
Los dos diagramas que obtenemos de la ejecución del ejemplo de código anterior se muestran en la siguiente imagen:
Como podemos ver, el coste medio disminuye con gran rapidez, y el límite de decisión final