Название | В поисках общей теории роста человечества |
---|---|
Автор произведения | Анатолий Васильевич Молчанов |
Жанр | Биология |
Серия | |
Издательство | Биология |
Год выпуска | 2021 |
isbn | 978-5-532-93559-4 |
В случае сопутствующей связи часто имеет место обратимость, т. е. возможность перестановки местами независимых переменных. Функциональный (не каузальный) подход особенно важен, когда предметом изучения являются процессы, внутренний причинный механизм которых пока неизвестен и выступает как своего рода черный ящик.
Примеры:
A. Свободно падающее тело: связь между мгновенным значением скорости и пройденным путем. Связь причинная, асимметричная S → V.
B. Связь между шириной зоны разброса дроби и расстоянием до цели: связь функциональная, сопутствующая; позволяет определять это расстояние по результатам исследования мишени.
C. Связь между энергопотреблением и численностью. Мировое энергопотребление пропорционально квадрату численности населения мира, но рост численности не есть причина роста энергопотребления. А рост энергопотребления не есть причина роста численности. Процессы эти сопутствующие и связь между ними сопутствующая, коррелятивная (в первом приближении, т. к. явления эти высшей степени сложности), а не причинно-следственная. Такая же связь, как мы покажем в дальнейшем, существует между численностью населения мира и скоростью ее роста (годовым естественным приростом).
Когда мы хотим объяснить какое-то явление, нам приходится ставить вопрос о его причине и искать причинно-следственную, каузальную связь. Проблема анализа причинности – одна из вечных проблем философии, которой философы занимаются на протяжении многих тысяч лет. Ею интересовался еще Аристотель, а статьи, посвященные причинности, до сих пор можно встретить на страницах современных философских журналов.
Хотя понятия причина и следствие обычно относятся к событиям, происходящим в пространственно-временном континууме, понятие событие в каузальном анализе можно заменить на понятие процесс, свойство, переменную. В точных науках исследуется связь между переменными, входящими в математическую зависимость, выражающую некоторый закон. Рассмотрим две переменные, описывающие некоторые свойства системы как функции времени: x(t) и y(t). Про связь между этими переменными y(x) можно сказать следующее:
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.
Примечания
2
https://www.youtube.com/watch?v=PcwCJHT4Onk
3
Foerster,