Wetland Carbon and Environmental Management. Группа авторов

Читать онлайн.
Название Wetland Carbon and Environmental Management
Автор произведения Группа авторов
Жанр Физика
Серия
Издательство Физика
Год выпуска 0
isbn 9781119639336



Скачать книгу

T., & Peverly, J. H. (1999). Iron oxidation states on root surfaces of a wetland plant (Phragmites australis). Soil Science Society of America Journal, 63(1), 247–252. https://doi.org/10.2136/sssaj1999.03615995006300010036x

      433 Wang, Y., Wang, H., He, J. S., & Feng, X. (2017). Iron‐mediated soil carbon response to water‐table decline in an alpine wetland. Nature Communications, 8(May), 1–9. https://doi.org/10.1038/ncomms15972

      434 Wang, Z. A., & Cai, W.‐J. (2004). Carbon dioxide degassing and inorganic carbon export from a marsh‐dominated estuary (the Duplin River): A marsh CO2 pump. Limnology and Oceanography, 49(2), 341–354. https://doi.org/10.4319/lo.2004.49.2.0341

      435 Wantzen, K. M., De Arruda Machado, F., Voss, M., Boriss, H., & Junk, W. J. (2002). Seasonal isotopic shifts in fish of the Pantanal wetland, Brazil. Aquatic Sciences, 64(3), 239–251. https://doi.org/10.1007/PL00013196

      436 Watson, A., & Nedwell, D. B. (1998). Methane production and emission from peat: The influence of anions (sulphate, nitrate) from acid rain. Atmospheric Environment, 32, 3239–3245. https://doi.org/10.1016/S1352‐2310(97)00501‐3

      437 Webster, J. R., & Benfield, E. F. (1986). Vascular plant breakdown in freshwater ecosystems. Annual Review of Ecology and Systematics, 17, 567–594. https://doi.org/10.1146/annurev.es.17.110186.003031

      438 Weiss, J. V, Emerson, D., & Megonigal, J. P. (2004). Geochemical control of microbial Fe(III) reduction potential in wetlands: Comparison of the rhizosphere to non‐rhizosphere soil. FEMS Microbiology Ecology, 48, 89–100. https://doi.org/10.1016/j.femsec.2003.12.014

      439 Weiss, J. V, Emerson, D., & Megonigal, J. P. (2005). Rhizosphere iron(III) deposition and reduction in a Juncus effusus L.‐dominated wetland. Soil Science Society of America Journal, 69(6), 1861–1870. https://doi.org/10.2136/sssaj2005.0002

      440 Weston, N. B., & Joye, S. B. (2005). Temperature‐driven decoupling of key phases of organic matter degradation in marine sediments. Proceedings of the National Academy of Sciences, 102(47), 17036–17040. https://doi.org/10.1073/pnas.0508798102

      441 Weston, N. B., Vile, M. A., Neubauer, S. C., & Velinsky, D. J. (2011). Accelerated microbial organic matter mineralization following salt‐water intrusion into tidal freshwater marsh soils. Biogeochemistry, 102(1), 135–151. https://doi.org/10.1007/s10533‐010‐9427‐4

      442 Weston, N. B., Neubauer, S. C., Velinsky, D. J., & Vile, M. A. (2014). Net ecosystem carbon exchange and the greenhouse gas balance of tidal marshes along an estuarine salinity gradient. Biogeochemistry, 120(1–3), 163–189. https://doi.org/10.1007/s10533‐014‐9989‐7

      443 Wetzel, R. G. (1992). Gradient‐dominated ecosystems: sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia, 229(1), 181–198. https://doi.org/10.1007/BF00007000

      444 Whiting, G. J., & Chanton, J. P. (1992). Plant‐dependent CH4 emission in a subarctic Canadian fen. Global Biogeochemical Cycles, 6(3), 225–231. https://doi.org/10.1029/92GB00710

      445 Whiting, G. J., & Chanton, J. P. (1993). Primary production control of methane emission from wetlands. Nature, 364(6440), 794–795. https://doi.org/10.1038/364794a0

      446 Whiting, G. J., & Chanton, J. P. (2001). Greenhouse carbon balance of wetlands: Methane emission versus carbon sequestration. Tellus B, 53(5), 521–528. https://doi.org/10.1034/j.1600‐0889.2001.530501.x

      447 Wilkinson, B. H., & McElroy, B. J. (2007). The impact of humans on continental erosion and sedimentation. Geological Society of America Bulletin, 119(1–2), 140–156. https://doi.org/10.1130/B25899.1

      448 Williams, C. J., Shingara, E. A., & Yavitt, J. B. (2000). Phenol oxidase activity in peatlands in New York state: Response to summer drought and peat type. Wetlands, 20(2), 416–421. https://doi.org/10.1672/0277‐5212(2000)020[0416:POAIPI]2.0.CO;2

      449 Williamson, C. E., Morris, D. P., Pace, M. L., & Olson, O. G. (1999). Dissolved organic carbon and nutrients as regulators of lake ecosystems: Resurrection of a more integrated paradigm. Limnology and Oceanography, 44(3 II), 795–803 https://doi.org/10.4319/lo.1999.44.3_part_2.0795

      450 Williamson, C. E., Overholt, E. P., Pilla, R. M., Leach, T. H., Brentrup, J. A., Knoll, L. B., et al. (2015). Ecological consequences of long‐term browning in lakes. Scientific Reports, 5(November), 1–10. https://doi.org/10.1038/srep18666

      451 Wilson, D., Blain, D., Cowenberg, J., Evans, C. D., Murdiyarso, D., Page, S. E., et al. (2016). Greenhouse gas emission factors associated with rewetting of organic soils. Mires and Peat, 17(04), 1–28. https://doi.org/10.19189/MaP.2016.OMB.222

      452 Winter, T. C. (1988). A conceptual framework for assessing cumulative impacts on the hydrology of nontidal wetlands. Environmental Management, 12(5), 605–620. https://doi.org/10.1007/BF01867539

      453 Wolf, A. A., Drake, B. G., Erickson, J. E., & Megonigal, J. P. (2007). An oxygen‐mediated positive feedback between elevated carbon dioxide and soil organic matter decomposition in a simulated anaerobic wetland. Global Change Biology, 13(9), 2036–2044. https://doi.org/10.1111/j.1365‐2486.2007.01407.x

      454 Wolf, E. C., Rejmánková, E., & Cooper, D. J. (2019). Wood chip soil amendments in restored wetlands affect plant growth by reducing compaction and increasing dissolved phenolics. Restoration Ecology, 27(5), 1128–1136. https://doi.org/10.1111/rec.12942

      455 Worrall, F., Armstrong, A., & Adamson, J. K. (2007). The effects of burning and sheep‐grazing on water table depth and soil water quality in a upland peat. Journal of Hydrology, 339(1–2), 1–14. https://doi.org/10.1016/j.jhydrol.2006.12.025

      456 Worrall, F., Moody, C. S., Clay, G. D., Burt, T. P., & Rose, R. (2017). The flux of organic matter through a peatland ecosystem: The role of cellulose, lignin, and their control of the ecosystem oxidation state. Journal of Geophysical Research: Biogeosciences, 122(7), 1655–1671. https://doi.org/10.1002/2016JG003697

      457 Wright, A. L., & Reddy, K. R. (2001). Phosphorus loading effects on extracellular enzyme activity in Everglades wetland soils. Soil Science Society of America Journal, 65(2), 588–595. https://doi.org/10.2136/sssaj2001.652588x

      458 Xiang, W., Wan, X., Yan, S., Wu, Y., & Bao, Z. (2013). Inhibitory effects of drought induced acidification on phenol oxidase activities in