Название | Wetland Carbon and Environmental Management |
---|---|
Автор произведения | Группа авторов |
Жанр | Физика |
Серия | |
Издательство | Физика |
Год выпуска | 0 |
isbn | 9781119639336 |
327 De Nobili, M., Bravo, C., & Chen, Y. (2020). The spontaneous secondary synthesis of soil organic matter components: A critical examination of the soil continuum model theory. Applied Soil Ecology, 154(January), 103655. https://doi.org/10.1016/j.apsoil.2020.103655
328 O’Connor, J. J., Fest, B. J., Sievers, M., & Swearer, S. E. (2020). Impacts of land management practices on blue carbon stocks and greenhouse gas fluxes in coastal ecosystems—A meta‐analysis. Global Change Biology, 26(3), 1354–1366. https://doi.org/10.1111/gcb.14946
329 Odum, W. E., Odum, E. P., & Odum, H. T. (1995). Nature’s pulsing paradigm. Estuaries, 18(4), 547–555. https://doi.org/10.2307/1352375
330 Olivares, C. I., Zhang, W., Uzun, H., Erdem, C. U., Majidzadeh, H., Trettin, C. C., et al. (2019). Optical in‐situ sensors capture dissolved organic carbon (DOC) dynamics after prescribed fire in high‐DOC forest watersheds. International Journal of Wildland Fire, 28(10), 761–768. https://doi.org/10.1071/WF18175
331 Oremland, R. S., Marsh, L. M., & Polcin, S. (1982). Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments. Nature, 296(March), 143–145. https://doi.org/10.1038/296143a0
332 Padgett, D. E., & Celio, D. A. (1990). A newly discovered role for aerobic fungi in anaerobic salt marsh soils. Mycologia, 82(6), 791. https://doi.org/10.2307/3760170
333 Paerl, H. W., Pinckney, J. L., Fear, J. M., & Peierls, B. L. (1998). Ecosystem responses to internal and watershed organic matter loading: Consequences for hypoxia in the eutrophying Neuse River Estuary. Marine Ecology Progress Series, 166, 17–25. https://doi.org/10.3354/meps166017
334 Paerl, H. W., Crosswell, J. R., Van Dam, B., Hall, N. S., Rossignol, K. L., Osburn, C. L., et al. (2018). Two decades of tropical cyclone impacts on North Carolina’s estuarine carbon, nutrient and phytoplankton dynamics: Implications for biogeochemical cycling and water quality in a stormier world. Biogeochemistry, 141(3), 307–332. https://doi.org/10.1007/s10533‐018‐0438‐x
335 Page, S. E., Siegert, F., Rieley, J. O., Boehm, H. D. V., Jaya, A., & Limin, S. (2002). The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature, 420(6911), 61–65. https://doi.org/10.1038/nature01131
336 Page, S. E., Hosciło, A., Wösten, H., Jauhiainen, J., Silvius, M., Rieley, J., et al. (2009). Restoration ecology of lowland tropical peatlands in Southeast Asia: Current knowledge and future research directions. Ecosystems, 12(6), 888–905. https://doi.org/10.1007/s10021‐008‐9216‐2
337 Pangala, S. R., Enrich‐Prast, A., Basso, L. S., Peixoto, R. B., Bastviken, D., Hornibrook, E. R. C., et al. (2017). Large emissions from floodplain trees close the Amazon methane budget. Nature, 552(7684), 230–234. https://doi.org/10.1038/nature24639
338 De Paolis, F., & Kukkonen, J. (1997). Binding of organic pollutants to humic and fulvic acids: Influence of pH and the structure of humic material. Chemosphere, 34(8), 1693–1704. https://doi.org/10.1016/S0045‐6535(97)00026‐X
339 Parkes, R. J., Gibson, G. R., Mueller‐Harvey, I., Buckingham, J. W., & Herbert, R. A. (1989). Determination of the substrates for sulphate‐reducing bacteria within marine and estuarine sediments with different rates of sulphate reduction. Journal of General Microbiology, 135(1), 175–187. https://doi.org/10.1099/00221287‐135‐1‐175
340 Pärn, J., Verhoeven, J. T. A., Butterbach‐Bahl, K., Dise, N. B., Ullah, S., Aasa, A., et al. (2018). Nitrogen‐rich organic soils under warm well‐drained conditions are global nitrous oxide emission hotspots. Nature Communications, 9(1), 1–8. https://doi.org/10.1038/s41467‐018‐03540‐1
341 Parton, W. J., Mosier, A. R., Ojima, D. S., Valentine, D. W., Schimel, D. S., Weier, K., & Kulmala, A. E. (1996). Generalized model for N2 and N2O production from nitrification and denitrification. Global Biogeochemical Cycles, 10, 401–412. https://doi.org/10.1029/96GB01455
342 Pastor, J., Solin, J., Bridgham, S. D., Updegraff, K., Harth, C., Weishampel, P., & Dewey, B. (2003). Global warming and the export of dissolved organic carbon from boreal peatlands. Oikos, 100(2), 380–386. https://doi.org/10.1034/j.1600‐0706.2003.11774.x
343 Pawson, R. R., Evans, M. G., & Allott, T. E. H. A. (2012). Fluvial carbon flux from headwater peatland streams: Significance of particulate carbon flux. Earth Surface Processes and Landforms, 37(11), 1203–1212. https://doi.org/10.1002/esp.3257
344 Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., et al. (2012). Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PloS One, 7(9), e43542. https://doi.org/10.1371/journal.pone.0043542
345 Petrescu, A. M. R., Lohila, A., Tuovinen, J.‐P., Baldocchi, D. D., Desai, A. R., Roulet, N. T., et al. (2015). The uncertain climate footprint of wetlands under human pressure. Proceedings of the National Academy of Sciences, 112(15), 4594–4599. https://doi.org/10.1073/pnas.1416267112
346 Petrone, K. C., Hinzman, L. D., Shibata, H., Jones, J. B., & Boone, R. D. (2007). The influence of fire and permafrost on sub‐arctic stream chemistry during storms. Hydrological Processes, 21, 423–434. https://doi.org/10.1002/hyp.6247
347 Petrone, R. M., Waddington, J. M., & Price, J. S. (2003). Ecosystem‐scale flux of CO2 from a restored vacuum harvested peatland. Wetlands Ecology and Management, 11(6), 419–432. https://doi.org/10.1023/B:WETL.0000007192.78408.62
348 Poffenbarger, H. J., Needelman, B. A., & Megonigal, J. P. (2011). Salinity influence on methane emissions from tidal marshes. Wetlands, 31(5), 831–842. https://doi.org/10.1007/s13157‐011‐0197‐0
349 Poindexter, C. M., Baldocchi, D. D., Matthes, J. H., Knox, S. H., & Variano, E. A. (2016). The contribution of an overlooked transport process to a wetland’s methane emissions. Geophysical Research Letters, 43, 6276–6284. https://doi.org/10.1002/2016GL068782
350 Pracht, L. E., Tfaily, M. M., Ardissono, R. J., & Neumann, R. B. (2018). Molecular characterization of organic matter mobilized from Bangladeshi aquifer sediment: Tracking carbon compositional change during microbial utilization. Biogeosciences, 15(6), 1733–1747. https://doi.org/10.5194/bg‐15‐1733‐2018
351 Prananto, J. A., Minasny, B., Comeau, L., Rudiyanto, R., & Grace, P. (2020). Drainage increases CO2 and N2O emissions from tropical peat soils. Global Change